

Fiche 1 exercices Cours n°1 « Composition d'un système chimique »

Exercice 1:

La posologie quotidienne maximale d'aspirine, dont le modèle moléculaire se trouve ci-contre pour un adulte, correspond à une masse de $m_a = 3.0 \ g$.

- 1- Calculer la masse molaire de l'aspirine M_a .
- 2- Exprimer puis calculer la quantité de matière maximale d'aspirine autorisée par jour.
- 3- En déduire le nombre maximum de molécules d'aspirine pouvant être absorbées quotidiennement.

Un comprimé d'aspirine contient une masse $m_{ca} = 500$ mg. Celui est dissous dans 100 mL d'eau.

- 5- Calculer la concentration molaire C d'aspirine.
- 6- Calculer de 2 manières la concentration en masse d'aspirine Cm

La masse d'aspirine tolérable pour un nourrisson est $m_{an} = 85$ mg. Il est donc nécessaire de diluer la solution pour adulte.

7- Quel est le volume Vp à prélever de la solution pour adulte afin d'obtenir une solution pour nourrisson ?

Exercice 2:

Une solution d'eau sucrée a été préparée par dissolution de 12 g de saccharose $C_{12}H_{22}O_{11}$ pour obtenir un volume total de solution $V_{sol} = 100$ mL. La masse de la solution obtenue vaut 103,92 g.

- 1- Calculer la masse volumique ρ_{sacc} de la solution d'eau sucrée.
- 2- Calculer la concentration en masse Cm de la solution.
- 3- Calculer la masse molaire M du saccharose.
- 4- Démontrer la relation liant la concentration en quantité de matière C et la concentration en masse Cm .
- 5- Calculer la concentration en quantité de matière de la solution d'eau sucrée à partir de la concentration en masse.

À partir de la constitution d'un atome

Le symbole du noyau de l'atome de chlore est 160.

Donnée : masses d'un nucléon $m_{nucléon} = 1,67 \times 10^{-24} g$ et d'un électron $m_{\rm electron} = 9,1 \times 10^{-28} g$.

- 1. Pourquoi peut-on négliger la masse des électrons ?
- Calculer la masse approchée d'un atome d'oxygène.
- À l'aide du résultat obtenu à la question 2, calculer la masse molaire de l'oxygène.

Bouteille de plongée HENTAL

Une bouteille de plongée de 12 L est gonflée sous une pression de 200 bars. Elle permet d'obtenir 2 400 L d'air à pression atmosphérique.

Donnée: $V_m = 24 L \cdot mol^{-1}$ à pression atmosphérique.

- Calculer la quantité de matière d'air contenue dans la bouteille.
- 2. Quel est le volume molaire de l'air contenu dans la bouteille?
- 3. Pourquoi cette valeur n'est-elle pas la même que celle donnée ci-dessus?

Concentrations et quantités de matière

Compléter le tableau suivant :

Solution	1	2	3
Concentration (en mol·L ⁻¹)		0,010	5,00 × 10 ⁻³
Volume (en L)	0,50		0,750
Quantité de matière de soluté (en mol)	2,5	0,020	

Rédiger chaque calcul