

Cours

« Suivi et modélisation de l'évolution d'un système chimique »

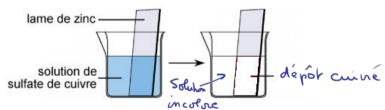
Les compétences à acquérir...

- À partir de données expérimentales, identifier le transfert d'électrons entre deux réactifs et le modéliser par des demi-équations électroniques et par une réaction d'oxydo-réduction.
- -Établir une équation de la réaction entre un oxydant et un réducteur, les couples oxydant-réducteur étant donnés.
- Mettre en œuvre des transformations modélisées par des réactions d'oxydo-réduction. une réaction d'oxydo-réduction : oxydant, réducteur, couple oxydant-réducteur, demi-équation électronique.
- Décrire qualitativement l'évolution des quantités de matière des espèces chimiques lors d'une transformation.
- Établir le tableau d'avancement d'une transformation chimique à partir de l'équation de la réaction et des quantités de matière initiales des espèces chimiques.
- Évolution des quantités de matière lors d'une transformation : État initial, notion d'avancement tableau d'avancement, état final.

<u>I- Etude d'une famille de transformation chimique : les réactions d'oxydoréduction</u> <u>1-Etude expérimentale entre l'élément Cuivre et l'élément Fer :</u>

Document 1

L'élément cuivre peut se trouver		L'élément fer peut se trouver		
sous forme ionique en une solution de sulfate de cuivre $Cu^{2+} + SO_4^{2-}$	tion de sulfate de dans le cas du métal le cas du métal fer Fe		sous forme ionique en une solution de sulfate de fer $\mathbf{Fe^{2+}} + \mathbf{SO_4^{2-}}$	


Document 2 : 2 tests d'identifications des ions Cu²⁺ et Fe²⁺

L'ajout d'hydroxyde de sodium Na+ + HO- entraine, dans une solution

de sulfate de cuivre $Cu^{2+} + SO_4^{2-}$, un précipité bleu	de sulfate de fer $Fe^{2+} + SO_4^{2-}$, un précipité vert

Expériences:

- Întroduire une lame de fer dans un bécher contenant environ 50 mL de solution de sulfate cuivre. Compléter le schéma après quelques minutes

Notez vos observations:

- de perte de coloration bleve nous montre qu'il y a eu une réaction à d'element cui re n'est plus sous forme ionique.

- Un dépôt "cui ré" s'est déposé sou la lame de fer

<u>Ouestionnement</u>: Comment interpréter cette transformation chimique? - Que sont devenus les ions cuivre Cu2+? Is se sont hans firme en alone de cuine... Comment des sans Cult peuvent -ils se transformer en .. atomes de Cu...? .. 38. s. doi vent gaçmen des élections e-

- Quels sont les ions présents, maintenant dans la solution ? Un test dans un tube à essais s'impose! Un ajout d'hydropyde de so dium (Nat + HOT) permet d'obtenir un péripité vert mettant en évidence les ions Fet

Comment des atomes Fe peuvent -ils se transformer en Fe 2+ ? Les aromes de feu perdent Lélections

Compléter la « demi équation » suivante $Fe = Fe^{2+} + le^{-}$

Compléter la « **demi équation** » suivante

$$Fe = Fe^{2+} + 2e^{-}$$

 $Cu^{2+} + 2e^- = Cu$

Conclusion:

$$\begin{cases} Cu^{2+} + 2e^{-} = Cu \\ Fe = Fe^{2+} + 2e^{-} \end{cases}$$

$$Cu^{2+} + Fe \rightarrow Cu + Fe^{2+}$$

Cette transformation fait partie des réactions d'oxydoréduction

Remarque: Dans cette équation bilan de la réaction, on a bien un dépôt de cuivre et l'apparition d'ion fer II dans la solution.

2- Couple oxydant/réducteur :

Si un oxydant capte des électrons, il se transforme en réducteur : on dit qu'il subit une réduction

Dans la réaction précédente, C.u. ... est l'oxydant

Si un **réducteur cède des électrons**, il se transforme en oxydant : on dit qu'il subit une oxydation

Dans la réaction précédente, est le réducteur.

Un couple oxydant / réducteur noté (Ox / Red) est constitué par un oxydant et un réducteur conjugués qui peuvent échanger des électrons suivant la demi-équation d'oxydoréduction :

$$oxydant + ne = réducteur$$

Cette demi-équation est une écriture formelle car elle ne représente pas une transformation chimique réelle.

Dans la réaction précédente, les couples mis enjeu sont Cu2+/ Cu. et Fe2+/ F.e.

3- Réaction d'oxydoréduction

Une réaction d'oxydoréduction met en jeu un transfert d'électrons entre deux couples oxydant/réducteur.

Le **réducteur du couple 1** oxydant /réducteur (Ox1 / **Red 1**) cède des électrons à l'oxydant du couple 2 (**Ox2** / Red 2).

Dans la réaction précédente,

le réducteur Fe. du couple Fe²⁺/ Fe. cède L. électrons à l'oxydant au couple Cu²⁺/ Cu

4- Pour écrire le bilan de la réaction d'oxydoréduction, vous devez :

Pour équilibrer les 2 demi-équations d'oxydoréduction :

- Ecrire les 2 demi-équations d'oxydoréduction en écrivant à gauche les 2 réactifs (un oxydant et un réducteur)
- Vérifier la conservation des éléments autres que O et H en ajoutant des coefficients stœchiométriques
 - Vérifier la conservation de l'élément O grâce à l'ajout éventuel de molécules d'eau H₂O.
 - Vérifier la conservation de l'élément H grâce à l'ajout éventuel de protons H⁺_(aq).
- Assurer la conservation de la charge électrique grâce à l'ajout d'électrons e-.

Pour écrire l'équation bilan de la réaction d'oxydoréduction :

- Multiplier les demi-équations d'oxydoréduction pour qu'elles aient le même nombre d'électrons.
- Ajouter membre à membre et simplifier, éventuellement, ce bilan, en supprimant les molécules d'eau et les protons excédentaires.

En aucun cas, des électrons ne doivent apparaître dans le bilan.

Vérifier que tous les éléments sont équilibrés ainsi que toutes les charges.

Un exemple simple :

les réachts

La réaction entre les ions argent Ag+en solution et le cuivre à l'état solide Cu)met en jeu les couples Ag+ /Ag et Cu2+/Cu

l'équation bilan de
$$2 \frac{\text{Ag}}{\text{Ag}} + \frac{\text{Cu}^2}{\text{C}} + \frac{\text{Cu}^2}{\text{C}}$$

les 2 demi-équations d'oxydoréduction $\begin{cases}
Ag^{+} + e^{-} = Ag \\
Cu = Cu^{2+} + e^{-}
\end{cases}$ En jais anv la somme

× les e- "disparainent"

la réaction d'oxydoréduction

les 2 réactifs ____ <u>Un exemple plus complexe</u>: La réaction entre les ions fer II (Fe²⁺) en solution et le les ions hypochlorite ClO-met en jeu les couples Fe^{3+} / Fe^{2+} et C ℓ O-/ C ℓ_2

L'oxydant qui réagit est ici Le réducteur qui réagit est ici ... Fe

les 2 demi-équations d'oxydoréduction

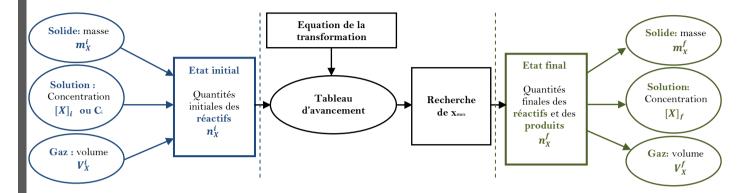
$$\begin{cases}
2 CRO^{-} + 4 N^{+} + 2 e^{-} = C \ell_{2} + 2 H_{2}O \\
Fe^{2+} = Fe^{3+} + e^{-}
\end{cases}$$
×

l'équation bilan de la réaction d'oxydoréduction

II- Comment suivre l'évolution d'un système chimique ?

1- Le principe :

Lors d'une transformation chimique, un système chimique évolue entre son état initial et son état final.


Système chimique : ensemble d'espèces chimiques susceptibles de réagir entre elles.

L'évolution d'une telle transformation chimique est suivie à l'aide d'un tableau

d'avancement, où figure la quantité de matière des réactifs et des produits au fur et à mesure de la transformation.

L'évolution du système est caractérisée par l'avancement x de la réaction, qui s'exprime en mole.

A l'état final, l'avancement final est noté x_f .

2- La méthode:

- A partir des données du texte, les quantités initiales des réactifs sont calculées (les quantités des produits étant nulles)

réactif solide	réactif en solution	réactif gazeux
Mneach = Mnéacht	C=[X]: = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$M_{x}^{x} = \frac{V_{x}}{V_{x}}$

- A partir des données du texte, écrire et équilibrer l'équation de la transformation
- Ecrire le tableau d'avancement de la transformation en introduisant

 $\textbf{Remarque:} \quad x_f est \ l'avancement \ final \ \grave{a} \ la \ fin \ de \ la \ r\'{e}action$

x_{max} est l'avancement maximal à la fin de la réaction

- Recherche de la valeur x_f : Si la réaction est totale alors la réaction s'arrête lorsque, au moins, une quantité d'un réactif est .mulle
- Une fois la valeur de $x_f = x_{max}$ connue, il est possible de calculer toutes les quantités des réactifs et des produits à l'état final.
- Pour conclure : les masses, les concentrations ou les volumes des réactifs ou des produits peuvent être calculés

Exemple: Voir

Activité expérimentale 3 « Etude d'une transformation chimique entre le diiode I_2 et les ions thiosulfate $S_2O_3^{2-}$ »

Une transformation totale est une transformation chimique qui s'arrête du fait de la consommation totale d'au moins d'un des ses réactifs n^f (réactif) = \square

- L'avancement final x_f atteint sa valeur maximale donc $x_f = . \times ma_{\infty}$

Cas particulier où les quantités des réactifs à l'état final sont . Mulles. n^f (réactifs) = .0

Le mélange réactionnel est un mélange dit ... A toschiomé hique.

Les réactifs ont été . in hoduits .. dans .. Les .. per portions . A toschiomé hique.

Une transformation non totale est une transformation qui s'arrête alors qu'aucun des réactifs n'a été entièrement consommé : n^f (réactifs) .. \neq .. \square ..

- 4- Exemple d'étude d'une transformation chimique : Synthèse d'un savon de formule brute $C_{18}H_{33}O_2Na$. Dans un ballon on introduit un volume $V_{ol} = 200,0$ mL d'oléine de formule brute $C_{57}H_{104}O_6$ et de masse volumique $\rho_{ol} = 880$ g/L, un volume $V_1 = 20,0$ mL d'une solution d'hydroxyde de sodium (NaOH(aq)) de concentration molaire C = 10,0 mol.L-1 et quelques grains de pierre ponce. On chauffe à reflux pendant 30 minutes. La réaction est totale et l'équation de la réaction s'écrit :

$$C_{57}H_{104}O_6(\ell) + 3 \text{ NaOH (aq)} \rightarrow C_3H_8O_3(\ell) + 3 C_{18}H_{33}O_2Na(s)$$

Masses molaires M_c = 12,0 g/mol - M_H = 1,00 g/mol - M_0 = 16,0 g/mol M_N = 14,0 g/mol - M_{Na} = 23,0 g/mol Calcul des quantités initiales à partir des données

Calculez la masse initiale m ⁱ ol introduite d'oléine	Calcul de la quantité n ⁱ ol initiale d'oléine introduite dans le ballon
Soe = No6	$M_{ob}^{\prime} = \frac{M_{ob}}{M_{ob}}$
=> more = 900 × VOP = 880 × 200.10-3 = 1769	= 176 = 0,199 mol
Calcul de la masse molaire M _{ol}	Calcul de la quantité initiale n ⁱ NaOH d'hydroxyde de
$ \Pi_{00} = 57 \Pi_{c} + 104 \Pi_{H} + 6 \Pi_{0} $ $ = 57 \times 12,0 + 104 \times 1,00 + 6 \times 16,0 $ $ = 884 g/m oR $	sodium $C = \frac{M_{NaOH}}{V_{A}}$ $= M_{NaOH} = C \times V_{A}$ $= Ao \times 20.10^{-3} = 0.20 \text{ mg}$

Complétez le tableau d'avancement pour cette transformation chimique fourni en annexe.

Équation de la transformation		$C_{57}H_{104}O_6(\ell)$ +	3 NaOH (aq) →	$C_3H_8O_3(\ell)$ -	+ 3 C ₁₈ H ₃₃ O ₂ Na(s)
Etat Initial (mol)	x = 0.	moe	MNOH		
en cours	х	moe = moe - 9c	= MNAOH - 3 x	mc34303= nc	M, aug = 3 oc
Etat Final (mol)	$x_f = \lambda_{mag}$	me = moe - seman	= MNAOH - 3 M	M = ne may	Mos = 3 ocman

La réaction étant totale, l'état final est obtenu lorsque l'un au moins des réactifs est épuisé. $n^f(...)=0$ mol L'état final est obtenu lorsque l'un au moins des réactifs est épuisé. $n^f(...)=0$ mol

Recherche de x_{max}

La transformation s'arrêtera (état final) lorsque l'avancement x aura atteint la valeur $\mathbf{x}_f = \mathbf{x}_{max} = . \Omega, \Omega. \xi. \mathcal{T}.$ mol

Le réactif limitant est .. Na OH. Le réactif en excès est .. O. Séine . (OS.).....

D'après votre tableau d'avancement, **déterminez l'état final,** c'est-à-dire les quantités finales des réactifs et de produits.

Calculez la masse mfsav de savon ainsi obtenue.

$$\Pi_{Sao} = 18 \, \Pi_{C} + 33 \, \Pi_{H} + 2 \, \Pi_{O} + \Pi_{Na}$$

$$= 18 \times 12,0 + 33 \times 1,00 + 2 \times 16,0 + 23,0$$

$$= 304 \, \text{g/mol}$$

=>
$$m_{\Delta\alpha\sigma}^{8} = m_{\Delta\alpha\sigma}^{8} \times \Pi_{\Delta\alpha\sigma}$$

= 0,20 × 304
= 60,8 9