

# Exemple de correction Exercices

« Suivi et modélisation de l'évolution d'un système chimique »

**11) a.** Ag $^+$  (aq) et H $^+$  (aq) sont les oxydants; H $_2$  (g) et Ag (s) sont les réducteurs des couples oxydant/réducteur:

 $Ag^+(aq)/Ag$  (s) et  $H^+(aq)/H_2$  (g).

 $\textbf{b.}~S_2O_8^{2-}$  (aq) et  $Cu^{2+}$  (aq) sont les oxydants ; Cu (s) et  $SO_4^{2-}$  (aq) sont les réducteurs des couples oxydant/ réducteur :  $S_2O_8^{2-}$  (aq)/SO $_4^{2-}$  (aq) et  $Cu^{2+}$  (aq)/Cu (s).

**c.** Au<sup>3+</sup> (aq) et Fe<sup>3+</sup> (aq) sont les oxydants ; Au (s) et Fe<sup>2+</sup> (aq) sont les réducteurs des couples oxydant/réducteur :

 $Au^{3+}(aq)/Au(s)$  et  $Fe^{3+}(aq)/Fe^{2+}(aq)$ .

**16 1. a.**  $I_2$  (aq) + 2  $e^-$  = 2  $I^-$  (aq) et  $C_6H_8O_6$  (aq) =  $C_6H_6O_6$  (aq) + 2  $H^+$  (aq) + 2  $e^-$ .

**b.**  $I_2(aq) + C_6H_8O_6(aq) \rightarrow C_6H_6O_6(aq) + 2 H^+(aq) + 2 I^-(aq).$ 

**2. a.**  $2 I^{-}(aq) = I_{2}(aq) + 2 e^{-}$ 

et  $H_2O_2$  (aq) + 2 H<sup>+</sup> (aq) + 2 e<sup>-</sup> = 2 H<sub>2</sub>O ( $\ell$ ).

**b.**  $H_2O_2(aq) + 2 H^+(aq) + 2 I^-(aq) \rightarrow I_2(aq) + 2 H_2O(\ell)$ .

# Exo 17:

1- Calcul des quantités initiales  $n_{F2}^i$  et\_ $n_{Fe}^i$ :

- F<sub>2</sub> est un gaz donc

$$n_{F2}^{i} = \frac{V_{F2}^{i}}{V_{m}} = \frac{6.0}{24} = 0.25 \text{ mol}$$

- Fe est solide donc

$$n_{Fe}^i = \frac{m_{Fe}^i}{M_{Fe}} = \frac{22,3}{55,8} = 0,40 \text{ mol}$$

# 2- Tableau d'avancement

| Équation<br>de la transformation |                          | F2( <b>g</b> ) +                        | Fe (s)                            | → 2F- (aq)                 | + Fe <sup>2+</sup> (aq)    |
|----------------------------------|--------------------------|-----------------------------------------|-----------------------------------|----------------------------|----------------------------|
| Etat Initial (mol)               | x = 0                    | $n_{F2}^i$                              | $n_{Fe}^i$                        | 0                          | 0                          |
| en cours                         | X                        | $n(F_2) = n^i(F_2) - x$                 | $n(Fe) = n^{i}(Fe) - x_{max}$     | n(F-)= 2x                  | $n(Fe^{2+})=x$             |
| Etat Final (mol)                 | $x_f = \mathbf{x}_{max}$ | $n^{f}(F_{2}) = n^{i}(F_{2}) - x_{max}$ | $n^{f}(Fe) = n^{i}(Fe) - x_{max}$ | nf (F-)= 2x <sub>max</sub> | $n^{f}(Fe^{2+}) = x_{max}$ |

La réaction étant totale, l'état final est obtenu lorsque l'un au moins des réactifs est épuisé. nf(...)= 0 mol

Recherche de x<sub>max</sub>

La transformation s'arrêtera (état final) lorsque l'avancement x aura atteint la valeur  $x_f = x_{max} = 0.25$  mol

Le réactif limitant est le difluor F<sub>2</sub>

Le réactif en excès est le fer Fe

3- L'état final consiste à calculer les quantités finales des réactifs et des produits :

| $n^f(F_2) = 0 \text{ mol (réactif limitant)}$                  | $n^{f}(F^{-}) = 2x_{max} = 2 \times 0.25 = 0.50 \text{ mol}$ |
|----------------------------------------------------------------|--------------------------------------------------------------|
| $n^f(Fe) = n^i(Fe) - x_{max} = 0.40 - 0.25 = 0.15 \text{ mol}$ | $n^{f}(Fe^{2+}) = x_{max} = 0.25 \text{ mol}$                |

## **Exo 18:**

1- Calcul des quantités initiales n<sup>i</sup>(H<sub>2</sub>O<sub>2</sub>) et n<sup>i</sup> (I-)

- H<sub>2</sub>O<sub>2</sub> est en solution donc

- I- est en solution

$$c = [I]_i = \frac{n^i(I^-)}{V_2}$$

$$\Leftrightarrow n^i(I^-) = [I^-]_i \times V_2$$

$$\Leftrightarrow n^i(I^-) = 1,0 \times 20.10^{-3}$$

$$\Leftrightarrow n^i(I^-) = 2,0.10^{-2} \text{ mol}$$

#### 2- Tableau d'avancement

| Équation<br>de la transformation |                 | 2I- +                                    | $ H_2O_2$ $\rightarrow$                              | $I_2$ +                | - 2НО-                      |
|----------------------------------|-----------------|------------------------------------------|------------------------------------------------------|------------------------|-----------------------------|
| Etat Initial (mol)               | x = 0           | $n_I^i$ –                                | $n^i_{ m H_2O_2}$                                    | O                      | 0                           |
| en cours                         | Х               | n( I-)= ni( I-)-2x                       | $n(H_2O_2)=n^i(H_2O_2)-x$                            | $n(I_2)=x$             | n(HO-)= 2x                  |
| Etat Final (mol)                 | $X_f = X_{max}$ | $n^{f}(I^{-}) = n^{i}(I^{-}) - 2x_{max}$ | $n^{f}(H_{2}O_{2})=$ $n^{i}(H_{2}O_{2})$ - $x_{max}$ | $n^{f}(I_{2})=x_{max}$ | nf (HO-)= 2x <sub>max</sub> |

La réaction étant totale, l'état final est obtenu lorsque l'un au moins des réactifs est épuisé. nf(...)= 0 mol

#### Recherche de Xmax

$$et/ou \begin{cases} n^f(\ I^{\text{-}}) = n^i(\ I^{\text{-}}) - 2x_{max} = \mathbf{0} \\ n^f(\ H_2O_2) = n^i(H_2O_2) - x_{max} = \mathbf{0} \end{cases} \Leftrightarrow \begin{cases} x_{max} = n^i(\ I^{\text{-}})/2 \\ x_{max} = n^i(H_2O_2) \end{cases} \Leftrightarrow \begin{cases} x_{max} = 2,0.10^{-2} \ /2 = 1,0.10^{-2} \ mol \end{cases}$$

La transformation s'arrêtera (état final) lorsque l'avancement x aura atteint la valeur  $\mathbf{x}_f = \mathbf{x}_{max} = 8,8$ . 10 <sup>-3</sup> mol Le réactif limitant est  $H_0O_0$ 

Le réactif en excès est I-

#### 3- L'état final consiste à calculer les quantités finales des réactifs et des produits :

| $n^f(H_2O_2) = 0 \text{ mol (réactif limitant)}$                                    | $n^{f}(I_{2}) = x_{max} = 8.8 \cdot 10^{-3} \text{ mol}$                  |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| $n^{f}(I^{-}) = n^{i}(I^{-}) - 2x_{max} = 2.0.10^{-2} - 2 \times 8.8 \cdot 10^{-3}$ | $n^{f}$ (HO-)= $2x_{max} = 2x8.8 \cdot 10^{-3} = 1.8.10^{-2} \text{ mol}$ |
| $n^{f}(I^{-})=2,4.10^{-3} \text{ mol}$                                              |                                                                           |

#### Exo 20:

#### 1- Tableau d'avancement

| Équation<br>de la transformation |                 | Mg(s) +                           | $Zn^{2+}(aq)$ $\rightarrow$                | Mg <sup>2+</sup> (aq)    | + Zn(s)               |
|----------------------------------|-----------------|-----------------------------------|--------------------------------------------|--------------------------|-----------------------|
| Etat Initial (mol)               | x = 0           | $n_{Mg}^i$                        | $n_{ m Zn^{2+}}^i$                         | 0                        | 0                     |
| en cours                         | X               | $n(Mg) = n^{i}(Mg) - x$           | $n(Zn^{2+})=n^{i}(Zn^{2+})-x$              | $n(Mg^{2+})=x$           | n(Zn)=x               |
| Etat Final (mol)                 | $X_f = X_{max}$ | $n^{f}(Mg) = n^{i}(Mg) - x_{max}$ | $n^{f}(Zn^{2+})= n^{i}(Zn^{2+}) - x_{max}$ | $n^{f}(Mg^{2+})=x_{max}$ | $n^{f}(Zn) = x_{max}$ |

# 2- La réaction est totale,

et l'on veut consommer entièrement le magnésium Mg donc:  $n^f(Mg) = n^i(Mg) - x_{max} = 0$  mol

Or on souhaite calculer la quantité de  $Zn^{2+}$  nécessaire pour consommer tout le magnésium. ce qui veut dire que la quantité finale  $n^f(Zn^{2+})=n^i(Zn^{2+})-x_{max}$  sera nulle aussi.

Les réactifs sont donc introduits dans les proportions stœchiométriques. Les quantités finales des réactifs sont nulles. « La valeur de xmax est la même »

et 
$$\begin{cases} n^{f}(Mg) = n^{i}(Mg) - x_{max} = \mathbf{0} \\ n^{f}(Zn^{2+}) = n^{i}(Zn^{2+}) - x_{max} = \mathbf{0} \end{cases} \Leftrightarrow \begin{cases} x_{max} = n^{i}(Mg) \\ x_{max} = n^{i}(Zn^{2+}) \end{cases} \Leftrightarrow \begin{cases} \mathbf{x}_{max} = \mathbf{n}^{i}(Mg) \\ \mathbf{x}_{max} = \mathbf{n}^{i}(Zn^{2+}) \end{cases}$$

$$\begin{split} &\operatorname{donc} \, \operatorname{n^i}(\operatorname{Zn^{2+}}) = \operatorname{n^i}(\operatorname{Mg}) \\ &\Leftrightarrow \lfloor \operatorname{Zn^{2+}} \rfloor_i \times \operatorname{V} = \frac{\operatorname{m^i}(\operatorname{Mg})}{M_{Mg}} \\ &\Leftrightarrow \operatorname{V} = \frac{\operatorname{m^i}(\operatorname{Mg})}{M_{Mg} \times [\operatorname{Zn^{2+}}]_i} = \frac{7.3}{24.3 \times 5, 0.10^{-2}} = 6.0 \ \operatorname{L} \end{split}$$

# Correction Extrait DS année précédente Exercice

1-

|              | Nom                          | Couples<br>Oxydant /<br>réducteur | Demi- Equations électroniques d'oxydo-<br>réduction       | Même nombre<br>d'électrons<br>transférés |
|--------------|------------------------------|-----------------------------------|-----------------------------------------------------------|------------------------------------------|
| l'oxydant    | ion iodate IO <sub>3</sub> - | $\mathrm{IO}_3$ -/ $\mathrm{I}_2$ | $2IO_3^- + 10e^- + 12H^+ = I_2 + 6H_2O$                   | ×                                        |
| le réducteur | $H_2O_2$                     | $O_2/H_2O_2$                      | $H_2O_2 = O_2 + 2e^- + 2H^+$                              | <b>×</b> 5                               |
|              | Equation                     | bilan de la réaction :            | $2IO_3^- + 5H_2O_2 + 2H^+ \rightarrow I_2 + 5O_2 + 6H_2O$ |                                          |

2-

| Equation ch           | imique          | 2IO <sub>3</sub> - +                              | 5 H <sub>2</sub> O <sub>2</sub> +                         | 2 H <sup>+</sup> | <b>→</b> I <sub>2</sub> | + 5O <sub>2</sub> -   | + 6 H <sub>2</sub> O |
|-----------------------|-----------------|---------------------------------------------------|-----------------------------------------------------------|------------------|-------------------------|-----------------------|----------------------|
| Etat initial          | x = 0           | ni(IO <sub>3</sub> -)                             | $n^i(H_2O_2)$                                             |                  | 0                       | 0                     |                      |
| Etat<br>intermédiaire | X               | $n(IO_3^-)=$<br>$n^i(IO_3^-)-2x$                  | $n(H_2O_2)$<br>= $n^i(H_2O_2)$ -5x                        | Excès            | $n(I_2)=x$              | $n(O_2) = 5x$         | Excès                |
| Etat final            | $x_f = x_{max}$ | $n^{f}(IO_{3}^{-})=$ $n^{i}(IO_{3}^{-})-2x_{max}$ | $n^{f}(H_{2}O_{2})$<br>= $n^{i}(H_{2}O_{2})$ -5 $x_{max}$ |                  | $n^f(I_2) = x_{max}$    | $n^f(O_2) = 5x_{max}$ |                      |

3- Calcul des quantités initiales des réactifs : n<sup>i</sup>(IO<sub>3</sub>-) et n<sup>i</sup>(H<sub>2</sub>O<sub>2</sub>)

- H<sub>2</sub>O<sub>2</sub> est en solution donc

$$\begin{split} c_A &= \lceil H_2 O_2 \rceil_i = \frac{n^i (H_2 O_2)}{V_A} \\ &\Leftrightarrow n^i (H_2 O_2) = \lceil H_2 O_2 \rceil_i \times V_A \\ &\Leftrightarrow n^i (H_2 O_2) = 11.6 \times 10.0 \cdot 10^{-3} = 1.16 \cdot 10^{-1} \, \mathrm{mol} \end{split}$$

$$c_{B} = [IO_{3}]_{i} = \frac{n^{i}(IO_{3}^{-})}{v_{B}}$$

$$\Leftrightarrow n^{i}(IO_{3}^{-}) = [IO_{3}]_{i} \times V_{B}$$

$$\Leftrightarrow n^{i}(IO_{3}^{-}) = 1,00 \times 40.10^{-3}$$

$$\Leftrightarrow n^{i}(IO_{3}^{-}) = 4,00.10^{-2} \text{ mol}$$

4- La réaction étant totale, l'état final est obtenu lorsque l'un au moins des réactifs est épuisé. nf(...)= 0 mol

Recherche de x<sub>max</sub>

$$et/ou \begin{cases} n^f(IO_3^-) = n^i(IO_3^-) - 2x_{max} = \mathbf{0} \\ n^f\left(H_2O_2\right) = n^i(H_2O_2) - 5x_{max} = \mathbf{0} \end{cases} \\ \Leftrightarrow \begin{cases} x_{max} = n^i(IO_3^-)/2 \\ x_{max} = n^i(H_2O_2)/5 \end{cases} \\ \Leftrightarrow \begin{cases} x_{max} = 4,00.10^{-2} / 2 = 2,00.10^{-2} \text{ mol} \\ x_{max} = 1,16.10^{-1} / 5 = 2,32.10^{-2} \text{ mol} \end{cases}$$

Le réactif limitant est IO<sub>3</sub>-

Le réactif en excès est H2O2

5- L'état final consiste à calculer les quantités finales des réactifs et des produits :

| <u>B</u> Betat iniai consiste a calcular les quantités iniaies des                        | reactified act from products.                                                |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| nf(IO <sub>3</sub> -) =0 mol (réactif limitant)                                           | $n^{f}(I_{2}) = x_{max} = 2,00.10^{-2} \text{ mol}$                          |
| $n^{f}(H_{2}O_{2}) = n^{i}(H_{2}O_{2}) - 5x_{max} = 1,16.10^{-1} - 5 \times 2,00.10^{-2}$ | $n^{f}(O_{2}) = 5x_{max} = 5 \times 2,00.10^{-2} = 1,00.10^{-1} \text{ mol}$ |
| $n^{f}(H_{2}O_{2}) = 1,16.10^{-2} \text{ mol}$                                            |                                                                              |

<u>7-</u> Calcul de la masse  $m_{12}^f$  de diiode obtenue.

$$n^{f}(I_{2}) = \frac{m^{f}(I_{2})}{M_{I_{2}}} = \frac{m^{f}(I_{2})}{2M_{I}}$$

$$\Leftrightarrow m^{\rm f}(I_2) = n^{\rm f}(I_2) \times 2M_{\rm I} = 2{,}00.\,10^{-2}\,\times 2 \times 127\,=5{,}08~{\rm g}$$

# Exercice résolu EN AUTONOMIE

Composition de l'état final d'un système



L'oxyde de manganèse MnO2 (s) sert à fabriquer des céramiques de couleur noire. On place m = 40 mg d'oxyde de manganèse  $MnO_2(s)$  et  $V_2 = 40 \text{ mL}$  de sulfate de fer (II) (Fe<sup>2+</sup>(aq)  $\checkmark$ S O<sub>4</sub><sup>2-</sup> (aq)) de concentration en quantité de matière  $c_2 = 1.0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$  en **milieu acide** dans un

Données: couples oxydant/réducteur MnO2 (s)/Mn2+ (aq) Fe3+ (aq)/Fe2+ (aq). Masses molaires atomiques:  $M_0 = 16.0 \text{ g} \cdot \text{mol}^{-1}$ ;  $M_{Mn} = 54.9 \text{ g} \cdot \text{mol}^{-1}$ .

- 1. Déterminer la quantité de matière de chaque réactif.
- 2. Déterminer les demi-équations électroniques d'oxydoréduction, et l'équation modélisant la transformation.
- 3. Réaliser un tableau d'avancement pour déterminer l'avancement final. On précisera le réactif limitant.
- 4. En déduire la composition de l'état final du système.

#### LES CLÉS DE L'ÉNONCÉ

- Le milieu est acide, c'està-dire qu'il contient des ions H+ (aq).
- L'oxydant du premier couple possède des atomes d'oxygène.

# LES QUESTIONS À LA LOUPI

- Déterminer : mettre en œuvre une stratégie pour trouver un résultat
- Réaliser : mettre en œuvre les étapes d'une démarche.
- En déduire : intégrer le résultat obtenu à la question précédente pour répondre.

# Correction exercice résolu :

1- Calcul des quantités initiales des réactifs : ni(Fe<sup>2+</sup>) et ni(MnO<sub>2</sub>)

- MnO<sub>2</sub> est solide donc

$$n_{MnO_2}^i = \frac{m_{MnO_2}^i}{M_{MnO_2}} = \frac{m_{MnO_2}^i}{M_{Mn} + 2M_O} = \frac{40.10^{-3}}{54,9 + 2 \times 16,0}$$

$$\Leftrightarrow n_{MnO_2}^i = 4,6.10^{-4} \text{ mol}$$

- les ions Fe<sup>2+</sup>sont en solution

$$c_2 = \lceil Fe^{2+} \rceil_i = \frac{n^i(Fe^{2+})}{V_B}$$

$$\Leftrightarrow n^i(Fe^{2+}) = \lceil Fe^{2+} \rceil_i \times V_B$$

$$\Leftrightarrow n^i(IO_3^-) = 1,0.10^{-2} \times 40.10^{-3}$$

$$\Leftrightarrow n^i(IO_3^-) = 4,0.10^{-4} \text{ mol}$$

|              | Nom              | Couples<br>Oxydant /<br>réducteur   | Demi- Equations électroniques d'oxydo-<br>réduction                                                                                                                                                                                                      | Même nombre<br>d'électrons<br>transférés |
|--------------|------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| l'oxydant    | $\mathrm{MnO}_2$ | $\mathrm{MnO_{2}/Mn^{2+}}$          | $MnO_2 + 2e^- + 4H^+ = Mn^{2+} + 2H_2O$                                                                                                                                                                                                                  | ×                                        |
| le réducteur | $Fe^{2+}$        | Fe <sup>3+</sup> / Fe <sup>2+</sup> | $Fe^{2+}=Fe^{3+}+e^{-}$                                                                                                                                                                                                                                  | ×2                                       |
|              | Equation         | hilan de la réaction :              | $\mathbf{M}_{\mathbf{p}}\mathbf{O} + \mathbf{a}\mathbf{F}_{\mathbf{a}}\mathbf{e}_{+} + \mathbf{a}\mathbf{H}_{+} + \mathbf{a}\mathbf{M}_{\mathbf{p}}\mathbf{e}_{+} + \mathbf{a}\mathbf{F}_{\mathbf{a}}\mathbf{e}_{+} + \mathbf{a}\mathbf{H}_{\mathbf{O}}$ |                                          |

| $MnO_2 + 2Fe^{2+} + 4H^+ \rightarrow Mn^{2+} + 2Fe^{3+} + 2H_2O$ |  |
|------------------------------------------------------------------|--|

3-

| Equation ch           | imique          | MnO <sub>2</sub> +                                                        | - <b>2</b> Fe <sup>2+</sup> +            | - 4 H <sup>+</sup> | $\rightarrow$ Mn <sup>2+</sup>         | + 2Fe <sup>3+</sup>       | + 2 H <sub>2</sub> O |
|-----------------------|-----------------|---------------------------------------------------------------------------|------------------------------------------|--------------------|----------------------------------------|---------------------------|----------------------|
| Etat initial          | x = 0           | $ m n^i(MnO_2)$                                                           | $n^{i}(Fe^{2+})$                         |                    | 0                                      | 0                         |                      |
| Etat<br>intermédiaire | X               | $   \begin{array}{c}     n(MnO_2) = \\     n^i(MnO_2) - x   \end{array} $ | $n(Fe^{2+})$<br>= $n^{i}(Fe^{2+})$ -2x   | Excès              | $n(Mn^{2+})=x$                         | n(Fe <sup>3+</sup> )= 2x  | Excès                |
| Etat final            | $x_f = x_{max}$ | $n^{f}(MnO_{2})=$ $n^{i}(MnO_{2})-x_{max}$                                | $n^f(Fe^{2+}) = n^i(Fe^{2+}) - 2x_{max}$ |                    | nf(Mn <sup>2+</sup> )=x <sub>max</sub> | $n^f(Fe^{3+}) = 2x_{max}$ |                      |

4- La réaction étant totale, l'état final est obtenu lorsque l'un au moins des réactifs est épuisé. nf(...)= 0 mol

$$et/ou \begin{cases} n^f(MnO_2) = n^i(MnO_2) - x_{max} = \mathbf{0} \\ n^f(Fe^{2+}) = n^i(Fe^{2+}) - 2x_{max} = \mathbf{0} \end{cases} \Leftrightarrow \begin{cases} x_{max} = n^i(MnO_2) \\ x_{max} = n^i(Fe^{2+})/2 \end{cases} \Leftrightarrow \begin{cases} x_{max} = 4.6.10^{-4} \text{ mol} \\ x_{max} = 4.0.10^{-4} \text{ mol} / 2 = 2.0.10^{-4} \text{ mol} \end{cases}$$

La transformation s'arrêtera (état final) lorsque l'avancement x aura atteint la valeur  $\mathbf{x}_f = \mathbf{x}_{max} = 2,0.10^{-4}$  mol (On prend la plus petite valeur des deux)

Le réactif limitant est Fe2+

Le réactif en excès est MnO<sub>2</sub>

5- L'état final consiste à calculer les quantités finales des réactifs et des produits :

|                                                                         | real real real real real real real real                                      |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------|
| $n^f(Fe^{2+}) = 0 \mod (réactif limitant)$                              | $n^{f}(Mn^{2+}) = x_{max} = 2,0.10^{-4} \text{ mol}$                         |
| $n^{f}(MnO_{2}) = n^{i}(MnO_{2}) - x_{max} = 4.6.10^{-4} - 2.0.10^{-4}$ | $n^{f}(Fe^{3+}) = 2x_{max} = 2 \times 2,0.10^{-4} = 4,0.10^{-4} \text{ mol}$ |
| $n^{f}(MnO_{2}) = 2,6.10^{-4} \text{ mol}$                              |                                                                              |