

CORRECTION

Fiche exercices cours n°1 « La matière qui nous entoure » http://www.capneuronal.fr/

Esercice 10

- a da peinture et le lait sont des mélanges homogènes car on n'obseive qu'une reule phase liquide
- . de mélange huile vinaigne et le contenu bleu sont des mélanges héterogène car on m'observe 2 phases.

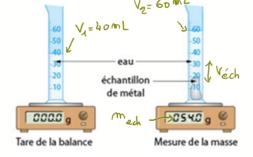
Exercice 14:

1-a: Il est écrit les brijous me contiemment pas que de l'or (75%) Le matérieu n'est donc pas un corps pur.

1.b: Calcul de la manse d'or présent dans la baque Mor

on a $P(\sigma r) = \frac{m\sigma r}{m \text{ bague}}$ => $m_{\sigma r} = P(\sigma r) \times m \text{ bague}$ = 0,75 x 2,35 = 1,8 q

2. Calcul du pourcentage en masse d'or du collier P(or)


 $P'(\alpha) = \frac{m\alpha}{m_{collier}} = \frac{12,6}{12,6 + 4,2} = 0,75$ soir $P'(\alpha) = 75\%$ Exercise 16 à la fin Exercise 13:

1-a: Calcul de la masse de l'échantillon méch

Sur la balance on lit directement

Méch = 54,09 1-6 Calcul du volume Véch

dons une éponsette graduée contenant V1 = 40 m L, le niveau d'eau augmente tel

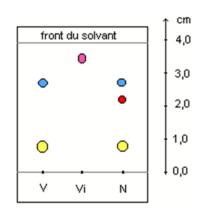
V2 = 60 m L Donc Véch = V2 - V1 = 60,0 - 40,0 = 20,0 mL

2 - Calcul de la masse volunique de l'échantillon Péch Péd = méch Véch véch lo 3 = 2700 kg/m³ = 20,0.10⁻³ x 10⁻³ d'échantellon est LT 1_m 3 donc de l'aluminium

Im L = 10^{-3} L

AL = 10^{-3} m³

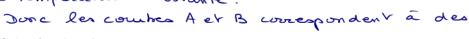
donc Im L = 10^{-3} x 10^{-3} m³

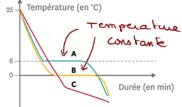

3 - de cuive est doré (cuivé)

donc facilement reconnaisable)

um

Exercice 20:


- · Seule l'encie violette est un corps pur car on observe qu'une seule tâche.
- mélanges car on observe plusieus tâches.
- · d'encre violette est la plus soluble dans l'éluant car la tâche est la plus haute. Elle est la plus enhaînée par l'éluant



o des encres vertes et moues possèdent d'eux constituants en commun. On observe 2 tâches jaunes à la même hauteur et 2 tâches bleves à la même houteur.

Exercice 5:

Nous savons que, pour un corp pur, le changement d'état (ici solidification) re fait à temperature constante.

et la combe c courses pond à un mélance: l'eau salère

De plus, l'eau distillée est un corps pur dont Todidification (eau) = 0°C Cela correspond à la course B

Il reste le cyclohessane qui corres pond à la combe A: Le cyclohessane est donc un corps pour.

Exercice 7

1. Pourcentage en masse des constillants du roudz:

$$P(A_8) = \frac{1}{4} = 0.25 \text{ donc } P(A_5) = 25\%$$

 $P(Ni) = \frac{1}{4} = 0.25 \text{ donc } P(Ni) = 25\%$
 $P(CLL) = \frac{1}{2} = 0.50 \text{ donc } P(CLL) = 50\%$

2. Calculo des masses de nichel mu; et d'argent mas

$$P(N_i) = \frac{m_{N_i}}{m_{\text{cuillère}}} = \sum_{i=1}^{m} m_{N_i} = P(N_i) \times m_{\text{cuillère}}$$

= 0,25 x 40 = 10 q

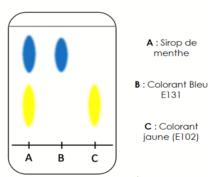
De même MA = log

Calcul de la marse de cuivre mon

$$P(cu) = \frac{mcu}{m cuillère} = 5 mcu = P(cu) \times mcuillère$$

$$= 0,50 \times 40 = 20$$

On a bien Ma + Mu; + Mag = 80 + 10 + 10 = 408


= Maillère

Exercice 9:

D'après le chromatogramme:

- de virop est constitué de 2 colorants car on observe 2 taches
- chaque tâche peut être identifier · 2 taches bleves au même nivau

 - · 2 tà ches journes ou même niveau

Done la couleur du vizop de menthe est obtenue en mélangeant le colorant E131 et le colorant E102.

Exercice 16 Attention aux unités

Calcul du volume d'eau Veau

Espèce chimique	eau	fer	air
Masse de l'échantillon	152 g	15,70 kg	g
Volume de l'échantillon	L	2,000 L	0,8 L
Masse volumique	1,00 g · mL ⁻¹	kg · m⁻³	1 g · L-1

Calcul de la masse volunique du fer

$$P_{\text{gen}} = \frac{m_{\text{gen}}}{V_{\text{gen}}} = \frac{.15,70}{2,000 \times 10^{-3}} = 7.850 \text{ lng}/\text{m}^{3}$$

 ${1L = 10^{-3} m^3}$

Calcul de la marge d'au mais