

CORRECTION Activité expérimentale 5 « Le sucre dans les boissons »

Nom:

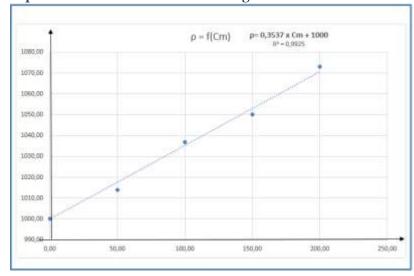
Vous disposez 2 solutions S₁ et S₃ sucrées de concentration en masse Cm1=200 g/L et Cm3=100 g/L Solution S₂ : Cm2=150 g/L et Solution S₄ Cm4=50,0 g/L

Fabrication des solutions étalons :

Vous devez fabriquer 2 autres solutions S_2 et S_4 de volume $V_2 = V_4 = 50,0$ mL par **dilution** de la solution S_1 de concentration massique Cm1=200 g/L dans un premier temps et par dilution de la solution S_3 de concentration massique Cm3=100 g/L dans un deuxième temps.

Calculer le volume prélevé V_{p2} pour fabriquer la solution S2 par dilution de la solution S1

Calculer le volume prélevé V_{p4} pour fabriquer la solution S4 par dilution de la solution S3


Détermination des masses volumiques des 4 solutions :

- Rédiger un protocole pour déterminer ces 4 masses volumiques ρ_1 , ρ_2 , ...

- Résultats obtenus :

Cm (g/L)	ρ(g/L)
0,00	1000,00
200,00	1073,00
100,00	1037,00
150,00	1050,20
50,00	1014,00

Exploitation de la courbe d'étalonnage

La masse volumique d'un soda est déterminée et $\rho_{soda} = 1040 \ g/L$

Graphiquement, déterminer la concentration en masse de sucre du soda Cm(soda)

Mathématiquement, déterminer la concentration en masse de sucre du soda Cm(soda)

Calculer le nombre de morceaux de sucre contenu dans 1 L de soda sachant que la masse d'un morceau de sucre est $m_{1ms}=5{,}00~g$