

EXERCICES

Lycée Joliot Curie à 7

Modélisation de la matière à l'échelle microscopique

http://www.capneuronal.fr/

VOCABULAIRE

Fission:

éclatement

d'un noyau.

13 Des atomes précieux

Recopier et compléter le tableau suivant.

		Atome						
		Platine Pt	Cuivre Cu	Or Au	Argent Ag			
Symbole du noyau				¹⁹⁷ / ₇₉ Au				
Nombre	électrons	78	29		47			
	protons							
	neutrons		34					
	nucléons	195			108			

🚺 À propos du soufre

On considère un atome de soufre dont le noyau a pour symbole $\frac{22}{5}$ S.

- 1. Combien d'électrons possède-t-il?
- 2. De quoi son noyau est-il constitué?
- 3. Quel est l'ordre de grandeur de cet atome ?

15 Un si petit noyau...

Si l'on représentait le noyau d'un atome par une tête d'épingle de diamètre 1 mm, l'atome aurait, à la même échelle, un diamètre de 100 m, soit environ celui des arènes de Nîmes.

- Calculer le quotient de ces deux diamètres.
- 2. Un atome d'hydrogène a un diamètre de l'ordre de 1 × 10⁻¹⁰ m.

Calculer le diamètre approximatif de son noyau.

3. Quelle conclusion tirer de la réponse à la question 2?

16 Combustible nucléaire

L'uranium 235 est utilisé comme combustible dans le cœur des réacteurs des centrales nucléaires. C'est l'énergie libérée par sa fission qui permet d'obtenir plus de 70 % de l'électricité produite en France, un pourcentage qui devrait diminuer dans l'avenir.

Données :

Masse du nucléon : $m_{nu} = 1,67 \times 10^{-27} \text{ kg}$. Masse de l'électron : $m_e = 9,11 \times 10^{-31} \text{ kg}$.

1. Indiquer la composition du noyau d'uranium, dont le symbole est $^{235}_{22}$ U.

- 2. Calculer la masse :
- a. du noyau;
- b. de l'atome correspondant.
- 3. Que peut-on dire de la masse des électrons du cortège électronique par rapport à celle de l'atome?

1 Isotopie

Le tableau ci-dessous propose une liste de numéros atomiques Z de quelques atomes et leur nombre de masse A correspondant.

Z	6	17	12	17	8	6	8	8
A	12	35	24	37	17	14	16	18

- 1. Définir l'isotopie.
- 2. a. D'après le tableau, combien l'atome d'oxygène, de symbole O et de numéro atomique Z = 8, a-t-il d'isotopes ?
- b. Pour chacun de ces isotopes, donner la composition du novau.
- 3. Reprendre les questions 2. a et 2. b pour le chlore CI dont le numéro atomique est Z = 17.