

COURS

Lycée Joliot Curie à 7

Modélisation de la matière à l'échelle microscopique

http://www.capneuronal.fr/

Les compétences à acquérir...

- Connaître la composition d'un atome.
- Le noyau de l'atome, siège de sa masse et de son identité.
- Citer l'ordre de grandeur de la valeur de la taille d'un atome.
- Comparer la taille et la masse d'un atome et de son noyau.
- Établir l'écriture conventionnelle d'un noyau à partir de sa composition et inversement : Numéro atomique Z, nombre de masse A , écriture conventionnelle ${}^A_Z X$
- Élément chimique.
- Masse et charge électrique d'un électron, d'un proton et d'un neutron, charge électrique élémentaire, neutralité de l'atome.

2- La longue histoire de l'atome : Regarder ensuite la vidéo 1 du chapitre

I- Le modèle de l'atome :

<u>1- Une brève histoire du model de l'atome</u>: A partir de l'activité « histoire de l'atome » téléchargeable sur capneuronal, classez les photos, les textes et les modèles de l'atome dans l'ordre chronologique.

	<u>actuel de l'atome :</u> 11 atome et compléte	r le modèle de l'atome ci-contre:
Atome	et son noyau	- Latome est constit positivement entour
	ZOOM	- de moyan de l'e potons chargés poi mon chargés. - C'est un édifice

- L'atome est constitué d'un moyan changé positivement entouré d'élections changés mégativement
- Le noyau de l'atone est composé de potons chargés positivement et de neutrons mon chargés.
- C'est un édifice électriquement neutre (La charge du moyau compense la charge des électrons
- d'atone est enentiellement constitué de vide.

II- Caractéristiques des constituants d'un atome:

1- Caractéristiques des constituants : Compléter le tableau en utilisant de la vidéo 2 sur capneuronal ...

				Masse (kg)	Charge (C)
Atome	Noyau	Nucléons	Proton	-1 ²	qp =1,602.10-13
				$m_p = 27/613.16$	$q_p = x_1 \cos x$
			Neutron	mn =1,675 . 152	$q_n = \bigcirc$
	Nuage	Electron			
	électronique		•	m _e =9,109.10-31	qe = 7/602.10-19
					21-19

La charge élémentaire e, c'est-à-dire la plus petit charge électrique, notée e est égale à e = 4,500. C Où l'unité des charges est le notée C. a- Dans le novau :

Les particules qui constituent le noyau de l'atome sont appelées les mucle en les mucles en les mucl Ces constituants du noyau sont:

- soit des **protons** : Un proton porte une charge électrique qui est notée q_p : $q_p = \frac{1}{2} e = \frac{1}{2} \cdot \frac{1$

$$q_p = \frac{1}{7}$$
, $e = \frac{1}{2}$, $\frac{1}{2}$,

Comme son nom l'indique, le neutron est

Sa masse
$$m_n$$
 est : $m_n = \sqrt{6.75 \cdot 10} \cdot 10$

Comparons la masse d'un proton à celle d'un neutron :

donc
$$m_{\text{nucleon}} \approx ...M$$
 proton. $\approx ...M$. new tran

b- Dans le nuage électronique :

Le nuage électronique dans un atome correspond à un espace sphérique dont le noyau est le centre et dans lequel les électrons se déplacent

- Un électron a une charge électrique . Mega. hue.... qui est notée qe et dont la valeur est:

$$q_e = e = -1,602.10^{-1.5}$$
- la masse d'un électron: $m_e = ...9,10.5...1.0^{-31}$

Comparons la charge d'un proton
$$q_p$$
 et la charge d'un électron q_e .

Leurs charges sont donc $q_p = q_e = q_e$

$$\frac{m_{nucl\acute{e}on}}{m_e} = \frac{\Lambda_{j} \zeta \overline{\gamma} \cdot 10^{-2} \overline{\gamma}}{9_{j} \log_{10} 10^{-34}} \simeq 1.800 \quad \text{donc } m_{nucl\acute{e}on} \approx 1.800 \quad \text{x } m_e$$

Conséquence: La masse d'un électron est fois plus petite que celle d'un nucléon (ou d'un proton ou d'un neutron). La masse d'un électron est donc très faille... par rapport à celle d'un proton ou d'un

2- L'élément chimique :

Exemple : l'élément oxygène est défini par 🗷 ۽ . 🎖 مين عن qu'il soit dans la molécule d'eau H₂O ou dans une molécule de dioxygène O2.

Non Remarque - L'élément oxygène peut-il posséder un nombre de protons différent? - L'élément oxygène peut-il posséder un nombre de neutrons différent ?

Un élément chimique possède le même nombre de protons mais peut posséder un nombre de neutrons

3-Représentation symbolique du noyau d'un élément X: on utilisera les notations n_{nucléons}, n_{protons} et n_{neutrons} pour parler du nombre de...

- Le nombre de masse A représente la somme des et des .msw.hans.... : C'est donc le nombre de .mw.cleans...

$$A = n_{\text{max}} = n_{\text{max}} + n_{\text{menhan}}$$

- Le <mark>numéro atomique Z</mark> est égal au nombre de

On en déduit le nombre de neutrons nneutrons

neutrons = A - Z = M waters

Compléter le symbole du noyau d'un élément X

Exercices:

- Le symbole d'un noyau d'uranium est $^{238}_{92}U$. Combien y a-t-il, dans ce noyau, de nucléons $n_{\rm nucléons}$, de protons n_{protons} et de neutrons n_{neutrons}? Détaillez vos calculs en écrivant les expressions littérales. Donner les valeurs de Z et A

$$n_p = 2.000$$
 protons $n_{nucl\acute{e}ons} = 2.000$ nucl\acute{e}ons

donc
$$n_n = A$$
. -2. = 151 - 32 = 146 neutrons

Représente les symboles des noyaux de Chlore (nprotons=17 et nneutrons=18) et du Carbone (nprotons=6 et n_{neutrons}= 6) et de l'hydrogène (n_{protons}=1 et n_{nucléons}= 1)

Atome de Chlore Cl

$$P = M_p = 17$$

 $P = M_p + M_m = 17 + 18 = 35$

Atome de Carbone C
$$Z = Mp = 6$$

$$A = Mp + Mm = 6 + 6 = 12$$

Exemples

Atome de Chlore
$$C\ell$$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$

Atome de Carbone

 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 6 + 6 = 12$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 6 + 6 = 12$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 6 + 6 = 12$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 6 + 6 = 12$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 6 + 6 = 12$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 6 + 6 = 12$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 6 + 6 = 12$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 6 + 6 = 12$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m = 17 + 18 = 35$
 $A = M_p + M_m + M_p = M_m + M_m = 17 + 18 = 35$
 $A = M_p + M_m + M_p = M_m + M_m = 17 + 18 = 35$
 $A = M_p + M_m + M_p = M_m + M_m + M_m = 17 + 18 = 35$
 $A = M_p + M_m +$

III- Quelques propriétés d'un atome

1- L'atome est électriquement neutre : électroneutralité

L'atome est un édifice électriquement neutre. Pour que l'atome soit électriquement neutre, il doit y avoir autant de charges positives que de charges négatives. C'est-à-dire il faut autant de positives que de charges négatives. d'électrons. (dans l'alome)

$$n_{\text{électrons}} = n_{\text{protons}} = \overline{\ldots}$$

Exercice: Déterminez tous les constituants de l'atome d'or dont le symbole du noyau est 197 Au

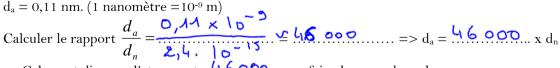
of Mp = Z = 79 potons [Mn = A-Z = 137-79 = 118 neutions] Patome d'avone étant élechiquement neute 4 [Me = Mp = Z = 79 election.

2- La masse <u>d'un atome réside dans son noyau :</u>

On peut donc dire que toute la masse d'un atome est concentrée dans le noyau et se calcule : de la masse d'un atome est concentrée dans le noyau et se calcule :

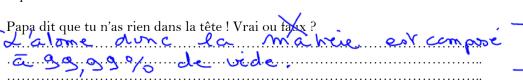
 $m_{\text{atome}} \approx A \times m_{\text{nucléon}}$ $m_{\text{atome}} \approx A \times m_p \text{ ou}$ ou $m_{atome} \approx A \times m_n$

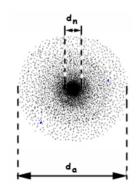
Vois la demonshala atome


mnuclear = mp = mn Exercice : Calculez la masse m_{at-Au} d'un atome d'or et la comparer à celle d'un atome de carbone m_{at-C}

Mmuleon = 1,67. 10-27 kg

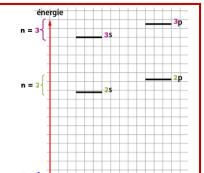
mat-Au = A x m mudéon = B7 x 1,67.10-27 = 3,28 x 10-23 kg mat-c = A' x m mulea = 12 x 1,67 x 10-27 = 2,00 x 10-ec kg


3- Dimensions de l'atome – structure lacunaire :


L'atome d'hydrogène, composé d'un proton et d'un électron qui gravite est représenté cicontre. Diamètre du noyau $d_n=2,4.\mathrm{fm}$ (1 femtomètre =10-15 m) et le diamètre de l'atome $d_a = 0.11 \text{ nm.} (1 \text{ nanomètre} = 10^{-9} \text{ m})$

Cela veut dire que l'atome est fois plus grand que le noyau.

Qu'y a-t-il entre le noyau (1 proton) et la sphère sur laquelle l'électron se déplace?..O.....vi.de



IV- Comment les électrons se répartissent-ils autour du noyau ?

1- Répartition des électrons autour du noyau de l'atome:

L'atome étant électriquement neutre $n_{\text{électrons}} = n_{\text{protons}} = \dots$

- la sous couche s contient au maximum ... électrons
- la sous couche p contient au maximum ... électrons

2- Configuration électronique d'un atome :

La configuration électronique d'un atome à l'état fondamental décrit la répartition de ses électrons sur en précisant le <u>numéro de la couche n</u> suivi <u>du nom de la sous couche s ou p</u> puis du <u>nombre d'électrons dans cette sous-couche.</u>

Exemple : La configuration électronique de l'aluminium (Z=13) s'écrit :

Remarque: Une configuration électronique est notée [X]

Exercice:

Elément	L'azote N : Z= 7	le chlore Cℓ : Z=17	le bérylium Be : Z= 4
Structure			
électronique			

3- Les électrons de valence :

Exemples:

La structure	[Al]	[N]	$[C\ell]$	[Be]
électronique				
dernière couche				
Nombre d'électrons de				
valence				

4- Le tableau périodique des éléments :

Le chimiste Dimitri MENDELEÏEV entreprit de classer les éléments dans un tableau en vue de souligner et de prédire leurs propriétés chimiques. Ce tableau a été ajusté au cours du temps.

Le tableau actuel est formé de 7 lignes appelées périodes et de 18 colonnes nommées familles.

Quelles sont les règles de constructions de cette classification périodique simplifiée ne comportant que les 18 premiers éléments ?

- Dans le tableau périodique les éléments sont rangés par numéro atomique Z
- Les lignes correspondent aux
- Les numéros des colonnes correspondent des atomes.

Tous les éléments appartenant à une même colonne possèdent

- On note deux « blocs » : le bloc ... et le bloc ...

constituent une même <u>Exemple :</u> Les éléments de la der	 mière colonne (He : héliu	um, Ne : Néor	oriétés chimiques et n et Ar : argon) constituent la famille tat naturel et qui ne réagissent pas.	
7- Comment compter les entités chimiques ? -En TP, nous avons répondu à la question suivante (Y a-t-il plus d'atomes d'aluminium dans une canette que de grains de riz dans une récolte annuelle nondiale de riz ?»		- masse d'un nucléon : $m_{nucléon} = 1,6726.10^{-24}\mathrm{g}$ - Symbole du noyau : ${}^{27}_{13}A\ell$ - Production annuelle de riz: $m_{riz_an} = 756 \mathrm{\ millions\ de\ tonnes}$		
Une canette de soda en Alu Combien y a-t-il d'atomes d'Al constituant une canette ? Calcul de la masse d'un atome $m_{at \ A\ell} =$	Un sac de bon Combien y a-t-il de dans un sac Masse d'un bonbon $m_{bb} = 2,0$	bonbons	Grains de riz Combien y a-t-il de grains de riz dans la production mondiale annuelle? Mesure de la masse d'un grain de riz: On pèse 10 grains de riz $m_{10} =$ donc $m_{1q} =$	
Masse de la canette : on pèse la canette $m_{canette} = 26,52 g,$	Masse du sac de bonbons : on pèse le sac $m_{sac} = 20 \text{ g}$		Masse de la production mondiale annuelle de riz $m_{prod} = 756$ millions de tonnes =	
Calcul du nombre d'atomes $I'A\ell$ dans la canette $I'_{A\ell}=$	Calcul du nombre de l A dans le sac A A A B A B A B A B B A B B A B B A B	bonbons	Calcul du nombre de de grains de riz dans la production $N_{riz} =$	
			·· ·	
Remarques :				

2- Définition de la mole :

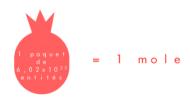
Calculons le nombre d'atomes N_C de carbone 12 contenu dans une masse $m_C \! = \! 12,\! 0$ g de carbone 12 :

$$N_C =$$

- masse du nucléon :

 $m_{nucl\acute{e}on} = 1,66.10^{-24} g$

- Symbole du noyau : ${}^{12}_{6}C$
- Masse de l'atome de carbone


 $m_{at-C}=A \ x \ m_{nucl\acute{e}on}=12 \ x \ 1,66.10^{-24}$

$$m_{at-C} = 1,992.10^{-23} g$$

Ce nombre est appelé constante d'Avogadro ou nombre d'Avogadro notée N_A et est exprimé en \mathbf{mol}^{-1}

On prendra par la suite une valeur approchée

$$N_A = \dots \mod^{-1}$$

3- Calcul de la quantité d'une espèce n_{esn}:

La quantité d'une espèce d'un échantillon n_{esp} est reliée au nombre d'entités N de l'échantillon par la relation:

$$n_{esp} =$$
 quantité de matière en $N_{esp} =$ nombre d'espèce (atome, molécule, ion...) $N_{A} =$ nombre d'Avogadro en

Exercice:

Calculer la quantité $n_{A\ell}$ d'atome d'aluminium contenu dans une canette

Calculer le nombre d'années pendant lesquelles on pourrait nourrir la population mondiale avec 1 mole de riz : $n_{riz} = 1$ mol