	Lycée Joliot Curie à 7	CHIMIE - Chapitre 5	Classe de Seconde
	COURS « Modélisation des tra	Nom :	
 Modéliser, à p établir l'équatio Identifier le ré de réaction. Not Déterminer le r l'identification de Modéliser, par 	artir de données expérimentales, une ton de réaction associée et l'ajuster. eactif limitant à partir des quantités de tion d'espèce spectatrice. éactif limitant lors d'une transformation ces espèces chimiques présentes dans l'état fin l'écriture d'une équation de réaction, l'osion d'un métal par un acide, l'action	matière des réactifs et de l'équation himique totale, à partir de nal. a combustion du carbone et du	

I- Qu'est ce qu'une transformation chimique?

On appelle transformation chimique , une transformation () au cours de laquelle des
(substances présentes à l'état initial) sont pour former des nouveaux
(nouvelles substances présentes à <mark>l'état final</mark>).

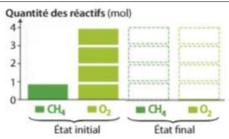
Complétez le tableau ci-dessous à l'aide des mots suivants : réactifs, produits, système chimique, état initial, état final, équation de réaction, ion spectateur, transformation chimique.

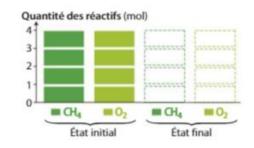
Mélange d'espèces chimiques dont certaines peuvent réagir entre elles et se transformer			
Système chimique avant la transformation chimique			
Espèce chimique présente dans l'état initial et qui va être transformée			
Passage d'un système chimique d'un état initial à un état final			
Écriture symbolique de la réaction chimique, indiquant les formules chimiques des réactifs et des produits			
Système chimique après la transformation chimique			
Espèce chimique présente dans l'état final mais pas dans l'état initial			
Espèce présente dans l'état initial et l'état final mais n'ayant subi aucun transformation			

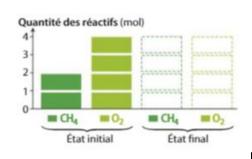
<u>Exemple de transformation chimique</u>: Au cours de la combustion du méthane dans l'air (mélange de dioxygène et de diazote essentiellement), il se forme du dioxyde de carbone et de l'eau

Etat initial: Espèces chimiques présentes avant la transformation chimique:		Etat final: Espèces chimiques présentes après la transformation chimique:
La transformation chimique est modéli+	<u>→</u>	

<u>II- Transformation chimique et équation de réaction chimique:</u> <u>1- Écriture de l'équation chimique :</u>


L' équation de la réaction chimique est l'é	ecriture symbolique d'une transformation chimique. Elle traduit laentre les réactifs et les produits.
- Elle s'écrit sous la forme en écrivant les fo	ormules des réactifs et des produits:
	++ réactifs les produits
- Les espèces chimiques n'a	apparaissent jamais.
produits afin de respecter la conservation d Ces nombres sont	appelés
L'équation de la réac	tion chimique est dite
Remarque : Le nombre stœchiométrique	n'est jamais écrit.
2- Equilibrer des réactions chimiques :	
Exemple de transformation	
Combustion du méthane CH4	+ → +
Combustion carbone	
	+ →
Corrosion d'un métal par un acide	
	$Fe_{(s)} + H^+_{(aq)} \rightarrow Fe^{2+}_{(aq)} \ + H_{2(g)}$
Action d'un acide sur le calcaire	
	$CaCO_{3 (s)} + H^{+}_{(aq)} \rightarrow Ca^{2+}_{(aq)} + CO_{2(g)} + H_{2}O_{(l)}$
Réaction entre l'acide chlorhydrique et l'hydroxyde de sodium	$H^{+}_{(aq)}+ HO^{-}_{(aq)} \rightarrow H_{2}O_{(l)}$
rouvent les réactifs et les produits	mules chimiques sont suivies en indice de l'état dans lesquels se
(s):	(l):
(g):	(aq):
II- Quand est ce qu'une transformation chi 1- Réactif limitant :	
Lors d'une transformation chimique, les quar	itités des réactifs
Une transformation chimique totale va dor	
Si les 2 réactifs sont entièrement consommé et que le	és « en même temps » alors ils ont été mélangés dans les e mélange est dit
Remarque : Le réactif limitant dépend	et


2- Comment prévoir le réactif limitant ?


a- Revenons sur la combustion du méthane

.....+ → +

b- En résumé :

Soit l'équation : a $A + b B \rightarrow c C + d D$

- si
$$\frac{n^i(A)}{a} < \frac{n^i(B)}{b}$$
 alors le réactif ... est le réactif limitant

– si
$$\frac{n^i(A)}{a} > \frac{n^i(B)}{b}$$
 alors le réactif ... est le réactif limitant

- si
$$\frac{n^i(A)}{a} = \frac{n^i(B)}{b}$$
 alors les réactifs ont été mélangés dans les et le mélange est dit

Exemple : Equilibrer l'équation suivante $Zn_{(s)} + H^+_{(aq)} \rightarrow Zn^{2+}_{(aq)} + H_{2(g)}$ A l'état initiale, les quantités initiales des réactifs sont $n^i(Zn) = 3,0.10^{-2} \, \text{mol}$ et $n^i(H^+) = 1,0.10^{-2} \, \text{mol}$ Les réactifs ont-ils été introduits dans les proportions stœchiométriques?

IV- Comment prélever une quantité de matière n?

1- Définition de la masse molaire atomique:

Elle s'exprime en

 $\underline{\text{Exercice}:} \text{ m}_{\text{nucl\'eon}} = 1,673.10^{-24} \text{ g et la constante d'Avogadro } N_{\text{A}} = 6,02.10^{23} \text{ } mol^{-1}$

Calculer la masse molaire de l'oxygène M_O sachant que $m_{at_O} = A \times m_{nucléon} = 16 * 1,673.10^{-24}$ $m_{at_O} = 2,677.10^{-23} g$

Calculer la masse molaire de l'aluminium M $_{_{A\ell}}$:

Quelle est la masse molaire du carbone M_C ?

Calculer la masse molaire de l'hydrogène M_H:

Remarques:

- Les masses molaires sont écrites dans

Extrait de la classification périodique

¹ H hydrogene 1,0 g/mol	$\overset{\mathbf{A}}{\mathbf{z}}\mathbf{X}$ M \longleftarrow Masse molaire atomique				⁴ He hélium 4,0 g/mol		
7 3 Li lithium 6,9 g/mol	9Be beryllium 9,0 g/mol	11B bore 10,8 g/mol	12C carbone 12,0 g/mol	14N 7N azote 14,0 g/mol	16O oxygéne 16,0 g/mol	19 F fluor 19,0 g/mol	20 Ne 10 Ne néon 20,2 g/mol
23Na 11Na sodium 23,0 g/mol	24Mg 12Mg magnésium 24,3 g/mol	27 13 AI aluminium 27,0 g/mol	28Si 14Si silicium 28,1 g/mol	31p phosphore 31,0 g/mol	32 16 S soufre 32,1 g/mol	35 17 CI chlore 35,5 g/mol	40 18 Ar argon 39,9 g/mol
39K 19K potassium 39,1 g/mol	40Ca calcium 40,1 g/mol						

- La masse molaire d'un ion est considérée égale à la masse molaire de l'atome ou de la molécule, car la masse des électrons est devant celle des atomes ou des molécules.

2- Définition de la masse molaire moléculaire :

La masse molaire moléculaire est des masses molaires atomique des atomes qui constituent la molécule.

Elle s'exprime aussi en g.mol-1.

<u>Exercice :</u>

Calcul de la masse molaire du méthane CH4

Calculer la masse molaire de l'eau H₂O :

Calculer la masse molaire du dioxygène O2

Calcul de la masse molaire du dioxyde de carbone CO₉

3- Pour une entité X, quelle est la relation entre la quantité de matière nx, la masse mx et la masse molaire Mx?

La masse molaire nous permet de calculer aisément la quantité de matière d'un échantillon à partir de sa masse par la formule :

 $n_X =$

Exercice:

Vous devez prélever une quantité $n_{sacc} = 7,20.10^{-2} \, mol$ de saccharose. Comment faire ?

Formule brute du saccharose $C_{12}H_{22}O_{11}$