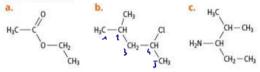
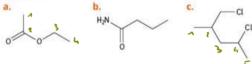


CORRECTION détaillée EXERCICES

COURS n°13 « Molécules organique –synthèse organique »

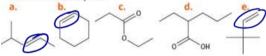
Quelques fonctions organiques


Soient les molécules organiques suivantes :


- Recopier chacune de ces molécules et entourer la fonction organique qu'elles portent.
- 2. À quelle famille appartient chacune de ces molécules ?
- 3. Nommer ces molécules.

Tormule topologique

 Donner les formules topologiques et nommer les molécules suivantes.



Donner les formules semi-développées et nommer ces molécules.

Molécules insaturées

Repérer l'insaturation ou les insaturations présente(s) dans les molécules ci-après.

2 Synthèse de la 4-nitroaniline

La 4-nitroaniline (D) est synthétisée par nitration en partant de l'aniline (A), selon ces séquences :

- 1. À quelle catégorie de réaction les étapes (), (2) et (3) de cette synthèse appartiennent-elles ?
- L'acide nitrique HNO₃ est un puissant oxydant, capable de transformer un groupe amine en un groupe nitro —NO₂.
- a. L'action directe de l'acide nitrique sur l'aniline pourrait-elle conduire à la nitroaniline ? Justifier la réponse.
- b. Justifier alors l'étape () de la synthèse.
- c. L'acide nitrique est-il chimiosélectif?
- d. Quel est le rôle de l'étape 69?

2. Jamille a - ester b - amme c-halogénoalcane d - amide e - amine 3. a)popanoate d'éthyle b) éthanamine pas besoin de poisser la position - NHz

- c) 3. bromo pentane d) but an amide
- c) N-méthyl popane

- ethansate d'éthyle

 C) CP-C
- b) CH3-CH2 CH2-C, NH2
 but an amide
 C) CP-CH2-CH-CH2-CH-CH3

¿-méthyl-1,4-dichloropentane

Moderne : prévence de , c=c; ou - c=c.

Nolecules : a, b et e da double lianon C=0

saturée : cet d Mest pas une insaturation

- 21 1. Les réactions des étapes ①, ② et ⑤ sont des réactions de substitution : un atome ou un groupe d'atomes est remplacé par un autre dans la molécule d'intérêt.
- 2. a. L'action de l'acide nitrique sur l'aniline conduirait à la substitution de l'un des atomes d'hydrogène du cycle par le groupe « nitro », et à la nitration du groupe amine.
- **b.** L'étape **1** de cette synthèse consiste en la protection du groupe amine par une fonction amide.
- **c.** L'acide nitrique ne réagissant pas avec la fonction amide, l'étape @ est chimiosélective.
- d. L'étape ⑤ consiste en la déprotection de la fonction amine, c'est-à-dire la transformation sélective du groupe amide protecteur en le groupe amine souhaité.

L'arôme artificiel d'ananas

Le butanoate d'éthyle est l'un des composants de l'arôme d'ananas. Sa synthèse au laboratoire qui s'effectue selon la réaction suivante est décrite ci-après.

- Dans un ballon, on réalise un mélange équimolaire de
 0.22 mol d'éthanol et d'acide butanoïque.
 - On ajoute 1 mL d'acide suifurique concentré et quelques grains de pierre ponce.
 - On adapte un réfrigérant à eau et on chauffe à reflux pendant 30 minutes.
 - On refroidit ensuite le ballon.

Après avoir isolé le produit recherché, on obtient une masse de 17,4 g de butanoate d'éthyle.

Données : température d'ébullition du butanoate d'éthyle $T_{\acute{e}b} = 121 \, ^{\circ}\text{C}$; $M(butanoate d'éthyle) = 116 \, g \cdot mol^{-1}$.

- 1. Quel est le rôle de l'acide sulfurique ?
- 2. Calculer le rendement de la synthèse.
- **3.** On souhaite augmenter la quantité maximale de butanoate d'éthyle produit. Trois propositions sont envisagées. Laquelle ou lesquelles convient-il de retenir ?
- a. Ajouter au 0,22 mol d'acide butanoïque de l'alcool en excès.
- b. Doubler le volume d'acide sulfurique.
- c. Éliminer l'eau produite au cours de sa formation.

⚠ I a l'eau m'en pas le solvant, m'ent pas en exces. Hz Dajjanait tableau d'avancement, ou Qx

equimolaire: $m_{eH} = m_{ab} = 0,22 \text{ mol}$.

pieur punce: conhôler l'reguler l'abrilliper.

He SO, acide rulfurique: catalyreur; être
en milieu acide (H+)

Calcul de la quantie finale de be
$$M_{be}^{g} = \frac{m_{be}^{f}}{n_{be}} = \frac{17.4}{116} = 1,50.10^{-1} \text{ mol}$$

. D'après le tableau d'avancement, ri la réaction ent totale

Calcul du rendement

$$R = \frac{m_{be}^{8}}{m_{be}^{max}} = \frac{150.10^{-1}}{0.27} = 0.68$$

3) Modifices/augmenter le rendement

D'après le comes le rendement augmente: {- si on un ho duit 1 réach (en excès (alcool)

d'ajour supl du catalysem me fair pas vaire le R.

(- Eliminer 1 produit (ear)

ab + eth = be + H20

K = [be]8 × [H20]4 \rightarrow refeth], \rightarrow

Qn = [ab]8 × [eth]4 \rightarrow retains along \rightarrow

et Qn < K

la réachan a lion dans le vers direct

[be]9 \rightarrow => \barrow \rightarrow

si [H20] \rightarrow along \rightarrow => \barrow \rightarrow

sero direct => [be]9 \rightarrow => \barrow \barrow

L'éthanoate d'héxyle E est un additif alimentaire (arôme de poire). Le mélange d'acide éthanoïque A ($n_1 = 0,50 \text{ mol}$), d'hexan-1-ol B ($n_2 = 0,50 \text{ mol}$) et de quelques gouttes d'acide sulfurique est réalisé. L'équation de la réaction s'écrit: $\mathbf{A} + \mathbf{B} \rightleftharpoons \mathbf{E} + \mathbf{H}_2\mathbf{O}$.

- Sachant que le rendement r de cette transformation est de 0,66, déterminer la composition du système à l'état final.
- b. Montrer que la constante d'équilibre associée à cette réaction vaut K(7) = 3,8 à la température de l'expérience.
- c. Montrer que le rendement augmente si le mélange initial contient 1,00 mol d'acide et 0.50 mol d'alcool.

A + B = E	+ H20)
T. : 0,66 Brouillan	tablean
Σ = M	= 2
Dear m'est pas	= xmax
	recherche (1)
K = [E]&×[H20]&	_
[A], × [B]	[E] = m = x1
- 0 8	, ,

a)
$$A + B \rightleftharpoons E + H_{20} K$$

$$EI \qquad M_{A} \qquad M_{B} \qquad / \qquad /$$

$$EF \qquad M_{A}^{3} - M_{A}^{2} - M_{B}^{2} - M_{B$$

• Recherche de
$$x_{max}$$

 $e^{1/2}u \begin{cases} m_A^f = m_A^f - x_{max} = 0 \\ m_B^f = m_B^f - x_{max} = 0 \end{cases} = 0$ $\begin{cases} x_{max} = m_A^f = 0,50 \text{ mol} \\ x_{max} = m_B^f = 0,50 \text{ mol} \end{cases}$

Calcul de reg
on a
$$R = \frac{m_E^4}{m_E^{max}}$$
 D'après le tableau $m_E^m = R_m m_{ap}$ et $m_E^4 = R_g$

=>
$$\pi = \frac{\pi f}{r_{ma}}$$
 => $\kappa f = \pi \times \kappa_{max} = 0.66 \times 0.50 = 0.33 \text{ mol}$
Composition de l'état final. $m^{\frac{1}{5}}$

$$M_{A}^{g} = M_{B}^{f} = M_{A}^{i} - \kappa_{g} = 0,50 - 0,33 = 0,17 \text{ mol}.$$

$$M_{E}^{g} = M_{H_{2}0}^{g} = \infty_{g} = 0,33 \text{ mol}$$

Calcul de K
$$K = \frac{[E]_{\S \times [H_2O]_{\S}}}{[A]_{\S \times [B]_{\S}}} = \frac{\frac{m_E^{\dagger}}{\cancel{\times}} \times \frac{m_{H_2O}^{\dagger}}{\cancel{\times}}}{\cancel{\times}} = \frac{\chi_{\S}^2}{(m_A^{\dagger} - \chi_{\S}) \times (m_B^{\dagger} - \chi_{\S})} = \frac{\chi_{\S}^2}{(m_A^{\dagger} - \chi_{\S})^2}$$

$$M_A = m_B^{\dagger}$$

$$=) \quad k = \frac{0.33^{?}}{(0.5 - 0.33)^{?}} = 3.7$$

c) browtlan
$$R = \frac{m_E^2}{m_{\text{max}}^2} = \frac{\kappa_0^2}{\kappa_{\text{max}}^2}$$

$$R = \frac{m_E^2}{m_{\text{max}}^2} = \frac{\kappa_0^2}{\kappa_{\text{max}}^2}$$

$$R = \frac{m_E^2}{m_{\text{max}}^2} = \frac{\kappa_0^2}{\kappa_{\text{max}}^2}$$

$$R = \frac{\kappa_0^2}{m_{\text{max}}^2} = \frac{\kappa_0^2}{\kappa_{\text{max}}^2}$$

$$R = \frac{\kappa_0^2}{m_{\text{max}}^2} = \frac{\kappa_0^2}{\kappa_{\text{max}}^2} = \frac{\kappa_0^2}{\kappa_0^2}$$

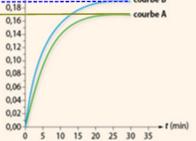
$$R = \frac{\kappa_0^2}{m_{\text{max}}^2} = \frac{\kappa_0^2}{\kappa_0^2}$$

$$R = \frac$$

Recherche de
$$\frac{\pi}{m_{\alpha}} = \frac{\pi}{m_{\alpha}} - \frac{\pi}{m_{\alpha\alpha}} = 0$$
 $\frac{\pi}{m_{\alpha}} = \frac{\pi}{m_{\alpha}} - \frac{\pi}{m_{\alpha\alpha}} = 0$
 $\frac{\pi}{m_{\alpha}} = \frac{\pi}{m_{\alpha}} - \frac{\pi}{m_{\alpha}} = 0$
 $\frac{\pi}{m_{\alpha}} = = 0$
 $\frac{\pi}{m_{$

Quelle voie de synthèse pour l'arôme d'abricot ?

On souhaite préparer l'arôme d'abricot par action de l'acide propanoïque ou de l'anhydride propanoïque sur le 3-méthylbutanol.


On réalise donc deux synthèses dans lesquelles cet alcool est introduit en défaut et en même quantité. Les courbes A et B ci-contre traduisent respectivement l'évolution de l'avancement chimique des synthèses n° 1 et n° 2 en fonction du temps : $C_2H_5CO_2H(\ell) + (CH_3)_2C_3H_5OH(\ell) \rightleftharpoons C_6H_5CO_2C_3H_5(CH_3)_2(\ell) + H_2O(\ell)$ $(C_2H_5CO)_2O(\ell) + (CH_3)_2C_3H_5OH(\ell) \rightarrow O_3H_5CO_2C_3H_5(CH_3)_2(\ell) + C_2H_5CO_2H(\ell)$ (2)

x (mmol)

0.20-

- Justifier l'emploi d'un excès d'acide propanoïque pour la voie de synthèse n° 1.
- 2. Quel est l'intérêt de l'emploi de l'anhydride propanoïque ?
- 3. À partir des courbes expérimentales A et B, déterminer le rendement de la synthèse nº 1.

1- Un excés d'un des réachs permet d'augmenter le rendement

1. D'après l'équation de reaction 2 permer de concluse que, l'utilisation de l'acide ethanoique anhydre (sons eau), permet d'obtenu une réachon totale

3) da combe B: réachen totale. On lit amas = 0,19 mol La combe A: réaction montotale

On let x g = 0,17 mol Calcul du rendement

$$\pi = \frac{M_{\text{exter}}^{\text{exter}}}{M_{\text{exter}}^{\text{Afco}}} = \frac{20}{20} = \frac{0.17}{0.19} = 0.89$$