Lycée Joliot Curie à 7

CHIMIE - Chapitre 2

Classe de Ter Spé φχ

Activité expérimentale « Petit poisson va-t-il mourir ?

Cours n°2 « Analyser un système chimique par des méthodes physiques»

Objectif: Déterminer la concentration d'une espèce dissoute dans l'eau

Ce TP est un dosage par étalonnage se faisant en fluieus étapes: 1- Fatiquer une solution mère So d'eau salée de concentation connue Co

- 2 Fabrique des solutions filles S: de concentrations connues C: à partir de la solution mère So
- 3- Nesurer la conductivité J; de chaque solution S;
- 4. Constinue la combre d'étalonnage (= f(C;)
- 5. Mesurer la conductivité TAq de l'aquarium
- 6 Reporter la valeur TAq sur la combre et déterminer la concentration de l'eau de l'aquarium

Etape 1: Calcul de la marre de sel m_{sel} mecersaire à la famica hon de la solution mêre 50 de concentation Co $C_0 = \frac{m_{sel}}{V_0} = 2 m_{sel} = C_0 \times V_0$ Per obligé de calculez Mosel

$$er \quad m_{sel} = \frac{m_{sel}}{M_{sel}}$$

=)
$$C_0 \times V = \frac{m_{sel}}{n_{sel}}$$

=> $m_{pel} = C_0 \times V_0 \times \eta_{pel}$ = $1,0.10^{-7} \times 100.10^{-3} \times (23,0+35,5)$ = $5,9.10^{-2} g$ { Remarque: on env à la limite $1,0.10^{-2} g$ { de la pécinion de la balance.

Etape 2,3: Fabrication des solutions filles

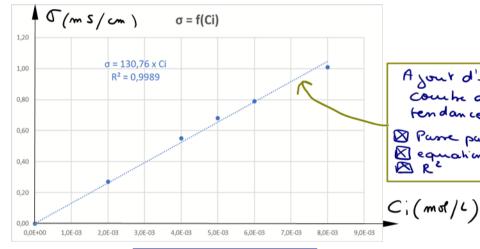
Protocole pour fatiquer la courte d'étalonnage

- Calular les volumes Vp, à pélever de la solution mère So
- Réaliser les délutions avec une pipette graduée et une féde jangée de 100 ml
- Mesurer les conductivités 0; des solutions 5;
- Constrine la coutre.

Calcul de la concenhation Cz après avoir prélevé le volume Vp = 20 mL de la solution mère:

does d'une diluhon

=>
$$C_2 = \frac{C_0 V_{Pz}}{V_{Qz}} = \frac{1,0.10^{-7} \times 20}{50} = 4,0.10^{-3} \text{ mod/L}$$


De la même jaçon, on calcule les autres concentations et on mercue lem conductivité

	S1	S2	S3	S4	S5
Volume Vp _i (mL)	10,0	20,0	25,0	30,0	40,0
prélevée de S0					
Concentration molaire	3- ماره و	6010-3	50.10-3	60153	8,0.10-3
$C_i \text{ (mol/L)}$	C, 10	4,0.0	0,01.0	6,0.70	0,0.10
Conductivité de la solution Si : σ_i m S/cm	0 2 2	255	0 4 8	7 29	N 24
	U. C. T	0,33		$O_1 + I_2$	0,07

Etape 4: Construction de la combe sous Excel

Ci (mol/L)	σ (mS/L)	
0,0E+00	0,00	
2,0E-03	0,27	
4,0E-03	0,55	
5,0E-03	0,68	
6,0E-03	0,79	
8.0F-03	1.01	

Kemarque R 2 est wake de 1. Cela veur due que l'équation suit "min" les

(C = 131 x C; Dove

Etape 5: Mesure de la conductivite de l'eau de l'aquarium diluée 10 fois GAg = 0,72 m S/cm

Etape 6: Calcul de la concenhation de l'eau de l'aquarium CA

reve Méthode: Connainant l'équation [= f(C,) obtenue par recienton lineaue, se calcul CAq

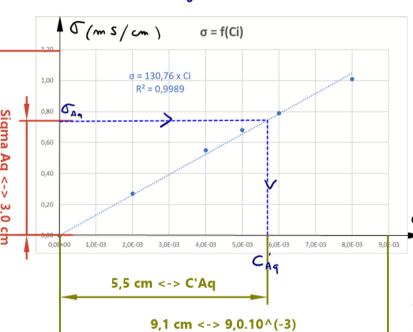
A your d'une

combe de tendance D Pane pa o Ø equalion Ø R²

da solution a été dissoute 10 fois donc CAq = 10 CAq = 5,5.10-2 mol/2

J'en déduir la concenhahan en mane de sel

Com = more = Morel × Morel


Vool

Vool

=> Cm = C × nsel = 5,5.10-2 x (23,0+35,5)

2 eme Nethode: Graphiquement

Echelle verticale

5,0 cm (-> 1,20 m5/cm S,0 cm (-), Long (-) 0,72 m5/cm

=>
$$L_{649} = \frac{5.0 \times 0.72}{1.20}$$

= 3,0 cm

Ci(mol/L)

Echelle verticale ∫ 9,0.10⁻³ ← 9,1 cm C'. C/Aq => 5,5 cm

donc CAG = 5,4.10-2 moll