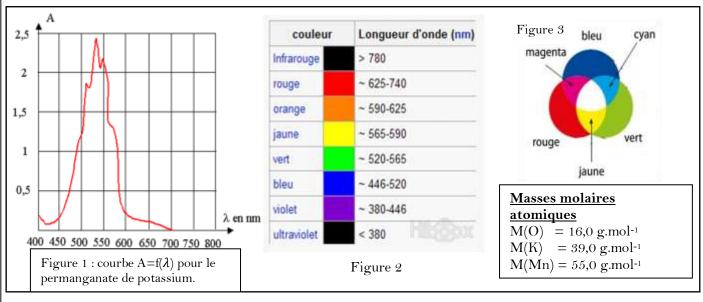
Exercice 1: Etude de l'eau de Dakin



L'eau de Dakin est un antiseptique utilisé pour le lavage des plaies et des muqueuses. Elle a une couleur rose.

Sur l'étiquette du flacon on peut lire, pour un volume V = 100 mL,

" 0,0010 g permanganate de potassium KMnO₄"

Cet exercice propose de déterminer la concentration en permanganate de potassium de l'eau de Dakin et vérifier si cela est en accord avec l'étiquette.

Partie A: Absorption de la solution et concentration

1. Une solution de permanganate de potassium est magenta (rose-violacée). Justifier sa couleur.

**

Afin de réaliser une courbe d'étalonnage, on prépare un volume $V_o = 500$ mL d'une **solution mère S**₀ de permanganate de potassium **KMnO4**₄ à la concentration molaire apportée $C_0 = 1.0 \times 10^{-2}$ mol.L-1. Cette solution est obtenue par dissolution d'une masse m_{pp} de permanganate de potassium **KMnO4(s) selon l'équation de dissolution suivante :**

$$KMnO_{4(s)} \rightarrow K_{(aq)}^{+} + MnO_{4(aq)}^{-}$$

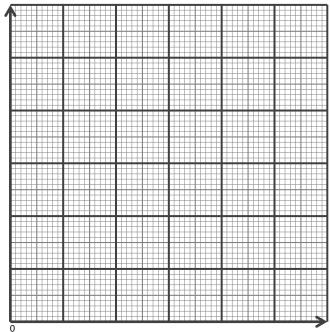
2. Calculer la masse m_{pp} de permanganate de potassium $KMnO_4(s)$ nécessaire pour fabriquer la solution mère S_0 .

La solution S_o permet de préparer une courbe d'étalonnage constituée par cinq solutions de concentrations connues dont on mesure l'absorbance A à la longueur d'onde 530 nm.

Solution	S_1	S_2	S_3	S_4	S_5
Concentration mol.L-1	10,0 x 10 ⁻⁵	8,0 x 10 ⁻⁵	6,0 x 10 ⁻⁵	4,0 x 10 ⁻⁵	2,0 x 10 ⁻⁵
A	0,221	0,179	0,131	0,088	0,044

3. À partir du spectre d'absorption ci-dessus (figure 1) réalisé avec une solution de permanganate de potassium, expliquer pourquoi a-t-on choisi la longueur d'onde 530 nm pour cette étude.

* *


4. Tracer la courbe représentant A = f(C)

Abscisses:

1 cm pour 2 x 10⁻⁵ mol.L⁻¹ Ordonnées : 1 cm pour 0,040

ATTENTION:

1 cm = 1 gros carreaux

5. La loi de Beer-Lambert est elle vérifiée ? Justifier

6. Calculer le coefficient directeur k de cette droite.

7. L'absorbance de l'eau de Dakin du fabriquant à la longueur d'onde 530 nm est A_{fab}=0,14

a. En déduire la valeur expérimentale C_{exp} de la concentration molaire en permanganate de potassium apporté de l'eau de Dakin.

b. A partir de l'étiquette, calculer la concentration molaire C_{fab} en permanganate de potassium de l'eau de Dakin annoncée par le constructeur et la comparer au résultat expérimental.

c. Calculer le pourcentage d'erreur entre la mesure et ce qui est écrit sur l'étiquette en utilisant la formule suivante.

$$\%Erreur = \frac{|c_{fab} - c_{exp}|}{c_{fab}} \times 100$$

8. Calculer le volume V_p à prélever de la solution mère S_0 pour fabriquer un volume V_3 de la solution fille S_3 . Précisez la verrerie nécessaire!!

Partie B : Conductivité de la solution et concentration

La solution mère S_0 de permanganate de potassium KMnO44, de concentration molaire apportée $C_0 = 1.0 \times 10^{-2}$ mol.L-1 a été fabriquée par dissolution selon l'équation de dissolution suivante :

$$KMnO_{4(s)} \rightarrow K^{+}_{(aq)} + MnO^{-}_{4(aq)}$$

9. Rappeler la loi de Kohlrausch

10. Donner l'expression de la conductivité σ_0 de la solution mère S_0 .

11. Rappeler l'unité des concentrations dans cette expression

12. Exprimer la conductivité σ_0 en fonction de la concentration molaire apportée C_0 . Justifier.

13. Calculer cette conductivité σ_0

Données :
$$\lambda_{Mn0_4^-} = 6, 10.10^{-3} \text{ S.m}^2/\text{mol et } \lambda_{K^+} = 7, 35.10^{-3} \text{ S.m}^2/\text{mol}$$

TOTAL Exercice / 20

Exercice 2: FABRICATION DE LA BIERE

De l'orge, de l'eau, du houblon et de la levure... Ces quatre ingrédients permettent de fabriquer des milliers de types de bières différentes.

A. Hydrolyse de l'amidon

L'orge concassée est la matière première dans la fabrication de la bière. L'orge constitue une source d'amidon qui est un polymère de formule :

Après une étape appelée maltage, l'amidon est plongé dans de l'eau chaude, ce qui rend actives des enzymes sensibles à la température. Ces enzymes sont des catalyseurs d'une transformation chimique appelée hydrolyse de l'amidon. Au cours de cette transformation, l'amidon se transforme en glucose, de formule $C_6H_{12}O_6$.

La capacité des enzymes à dégrader l'amidon est influencée par la concentration en ions oxonium $[H_3O^+]$.

L'activité des enzymes est optimale lorsque $1.3 \times 10^{-6} \le [H_3 O^+] \le 3.2 \times 10^{-6} \ mol \cdot L^{-1}$.

Lors d'un contrôle, on mesure un pH = 5.6.

1. Vérifier que l'activité des enzymes est optimale.

**

B. Fermentation alcoolique

Lors du brassage, on ajoute du houblon au liquide obtenu précédemment contenant des sucres, en particulier le glucose. Le houblon libère des espèces chimiques qui confèrent à la bière son amertume et son arôme. Le mélange ainsi obtenu est appelé « moût ».

À l'issue du brassage, on ajoute la levure qui entraîne une transformation appelée fermentation. Celle-ci produit de l'éthanol et du dioxyde de carbone à partir des sucres. En particulier, le glucose est transformé en éthanol. Cette transformation est modélisée par l'équation de réaction suivante :

$$C_6 H_{12} O_{6\,(aq)} \rightarrow 2\; C_2 H_5 OH_{(aq)} \; + \; 2\; CO_{2\,(g)}$$

Données:

- masse molaire atomique en $g \cdot mol^{-1}$: $M_H = 1.0$; $M_C = 12.0$; $M_O = 16.0$;
- constante des gaz parfaits : $R = 8.314 J \cdot K^{-1} \cdot mol^{-1}$;
- conversion entre les échelles de température : $T(K) = \theta(^{\circ}C) + 273$;
- pression atmosphérique : $p_{atm} = 1,013 \times 10^5 Pa$.

On considère un « moût » de concentration en masse de glucose égale à 92,7 $g \cdot L^{-1}$.

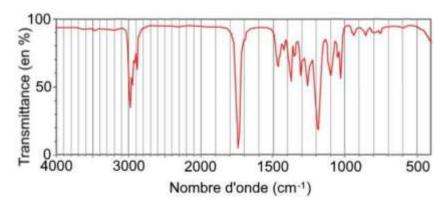
On fait l'hypothèse que la température de fermentation est égale à 20 °C, que la transformation est totale et que le gaz produit se comporte comme un gaz parfait.

2. Déterminer la quantité dioxyde de carbone n_{CO2}^f formée et la valeur du volume de dioxyde de carbone gazeux maximum dégagé à la pression atmosphérique au cours de la fermentation d'un volume V=1,0 L de moût.

La démarche suivie devra être clairement exposée et les calculs devront être détaillés.

**

C. Saveur de la bière


Le houblon renferme de nombreuses espèces chimiques organiques qui réagissent avec l'éthanol issu de la fermentation pour donner naissance à une large variété d'espèces chimiques odorantes.

Parmi eux, le butanoate d'éthyle, de formule brute $C_6H_{12}O_2$ est un ester et il apporte à la bière une agréable saveur de fruit tropical.

La formule semi-développée du butanoate d'éthyle est la suivante :

$$\begin{matrix} O\\ \parallel\\ CH_3-CH_2-CH_2-C-O-CH_2-CH_3\end{matrix}$$

Après avoir isolé un composé présent dans un échantillon de bière, un laboratoire d'analyse réalise un spectre infrarouge de ce composé :

d'après www.unice.fr

Table spectroscopique simplifiée :

Liaison	Nombre d'onde (cm ⁻¹)	Intensité	
O-H alcool libre	3500 – 3700	Forte, fine	
O -H alcool lié	3200 – 3400	Forte, large	
O-H acide carboxylique	2500 – 3200	Forte à moyenne, large	
N-H amine ou amide	3100 – 3500	Forte à Moyenne	
N-H amine ou amide	1560 – 1640	Forte ou moyenne	
С-Н	2800 – 3100	Forte à moyenne	
C=O ester	1700 – 1740	Forte	
C=O amide	1650 – 1740	Forte	
C=O aldéhyde et cétone	1650 – 1730	730 Forte	
C=O acide carboxylique	1680 – 1710	Forte	
С-О	1040 - 1300	Forte à moyenne	

3. Vérifier que le spectre infrarouge obtenu peut correspondre au butanoate d'éthyle.

**

4. Expliquer si ce spectre infrarouge suffit ou pas pour affirmer que le composé isolé est le butanoate d'éthyle.

**

TOTAL Exercice / 10 points