

Objectifs: - Tracer les vecteurs vitesse et accélération d'un mobile sur des enregistrements.

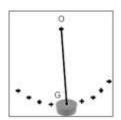
- Vérifier expérimentalement la validité de la deuxième loi de Newton.

I Etude expérimentale d'un mouvement circulaire et uniforme

1 - Expérience :

On lance un mobile sur coussin d'air (pas de frottements) de masse m = 450 g retenu par un fil tendu sur une et on enregistre le mouvement de son centre d'inertie G. On obtient l'enregistrement page 4.

La durée séparant deux marques consécutives est constante: τ = 40 ms. On note O le centre de la trajectoire, **R** son rayon, G_0 , G_1 , les positions successives du centre de gravité G du mobile.



Tout objet ponctuel ou/et son centre gravité G dans l'espace, est repéré par trois coordonnées x(t), y(t), z(t), fonction du temps t, dans le repère (O, \vec{i} , \vec{j} , \vec{k} ,) associé au référentiel. On définit alors le vecteur position \overline{OG} tel que

$$\overrightarrow{OG} = x(\dagger)$$
. $\overrightarrow{i} + y(\dagger)$. $\overrightarrow{j} + z(\dagger)$. \overrightarrow{k}

x(t), y(t), z(t) sont appelées équations horaires

a- Tracez, à main levée, la trajectoire du mouvement. Quelle est la trajectoire du mouvement ? Que peuton supposer sur la vitesse de l'objet ? En déduire la nature du mouvement du centre de gravité G du mobile?

positions successives occupées b- Mesurer le rayon R de la trajectoire en cm puis l'exprimer en m. par ce point au cours du temps. R =

2- Construction des vecteurs vitesses \vec{v}_1 et \vec{v}_3

La vitesse traduit le déplacement dans le temps du centre de gravité dans le temps, c'est-à-dire une variation du vecteur position \overline{OG} . On peut donc exprimer le vecteur vitesse de plusieurs façon

$$\overrightarrow{v} = \frac{d\overrightarrow{OG}}{dt} = \frac{\Delta \overrightarrow{OG}}{\Delta t}$$
 soit $\overrightarrow{v} = \mathbf{v_x(t)}$. $\overrightarrow{l} + \mathbf{v_y(t)}$. $\overrightarrow{l} + \mathbf{v_z(t)}$. \overrightarrow{k}

$$\frac{1}{\Delta t} = \frac{1}{\Delta t} \quad \text{soil } \nu = \mathbf{v}_{\mathbf{x}}(1), \ \nu + \mathbf{v}_{\mathbf{y}}(1), \ \nu + \mathbf{v}_{\mathbf{z}}(1), \ \kappa$$

avec
$$\mathbf{v}_{x}(t) = \frac{dx}{dt}$$
; $\mathbf{v}_{y}(t) = \frac{dy}{dt}$ et $\mathbf{v}_{z}(t) = \frac{dz}{dt}$

Remarque: le vecteur vitesse en un point est toujours tangent à la trajectoire et dans le même sens que celui du mouvement.

En physique, la dérivée est notée $\frac{d...}{dt}$ et non (...)' comme en math.

La trajectoire d'un point

matériel est l'ensemble des

Dans notre cas, nous utiliserons
$$\overrightarrow{v} = \frac{\Delta \overrightarrow{OG}}{\Delta t}$$

Au point G_1 , $\overrightarrow{v}_1 = \frac{\Delta \overrightarrow{OG}}{\Delta t} = \frac{\overrightarrow{OG}_2 - \overrightarrow{OG}_0}{t_2 - t_1} = \frac{\overrightarrow{OG}_2 + \overrightarrow{G_0O}}{t_2 - t_1} = \frac{\overrightarrow{G_0O} + \overrightarrow{OG}_2}{t_2 - t_1} = \frac{\overrightarrow{G_0O}}{2\tau}$

Soit la valeur (la norme) du vecteur vitesse en G_1 est : $V_1 = \frac{G_0 G_2}{2\tau}$

a- Calculer les valeurs des vitesses v_1 et v_3 en m.s⁻¹. Comparer v_1 et v_3 .

$$v_1 = v_3 = v_3 = v_3 = v_3 = v_3 = v_4 = v_3 = v_3 = v_3 = v_4 = v_5 = v_5$$

En physique, la valeur d'un vecteur \overrightarrow{v} se note simplement v et non $\|\vec{v}\|$ comme en math.

b- Dessiner les vecteurs vitesses \vec{v}_1 et \vec{v}_3 avec l'échelle: 1 cm \leftrightarrow 0,1 m.s⁻¹. Pour cela vous calculerez les longueurs des vecteurs $\vec{\mathbf{v}}_1$ et $\vec{\mathbf{v}}_3$ à l'échelle notées $L_{\vec{\mathbf{v}}_1}$ et $L_{\vec{\mathbf{v}}_3}$. Comment sont orientés ces vecteurs ?

$$L_{\vec{\mathbf{v}_1}}$$
=

$$L_{\vec{\mathbf{v}}_3}$$
=

3- Vecteur accélération \vec{a}_2 au point G_2 :

Le vecteur accélération $ec{\mathbf{a}}$, dans un mouvement, traduit une variation du vecteur vitesse $ec{v}$ C'est pourquoi le vecteur accélération \vec{a} est défini comme étant la dérivée du vecteur vitesse \vec{v} par rapport au temps dt.

$$\vec{a} = \frac{d\vec{v}}{dt}$$

Sur un mouvement au point M_2 , on peut aussi définir l'accélération $ec{a}_2$ comme étant une variation de vecteur vitesse $\Delta \vec{v}_2 = \vec{v}_3 - \vec{v}_1$ entre les points M_1 et M_3 sur une durée $\Delta t = t_3 - t_1 = 2\tau$:

$$\vec{a}_2 = \frac{d\vec{v_2}}{dt} = \frac{\Delta \vec{v_2}}{\Delta t} = \frac{\vec{v_3} - \vec{v_1}}{2\tau}$$

- **a-** Reporter très soigneusement au point ${\sf G_2}$ les vecteurs \vec{v}_3 et \vec{v}_1
- **b-** Construire **très soigneusement** au point G_2 , le vecteur $\Delta \vec{\mathbf{v}}_2 = \vec{\mathbf{v}}_3 \vec{\mathbf{v}}_1$.

Laisser les traits de construction au crayon à papier.

c- En utilisant l'échelle des vitesses, déterminer la valeur du vecteur $\Delta \overrightarrow{v_2}$ en m.s-1 et calculer l'intensité du

vecteur
$$\vec{a}_2$$
 sachant que $\, \mathbf{a_2} = \frac{\Delta v_2}{2 \times \tau} \,$

$$L_{\Delta \vec{\mathbf{v}}_2}$$
 = cm

d- Représenter le vecteur \vec{a}_2 avec l'échelle des accélérations: 1 cm \leftrightarrow 0,5 m.s⁻². Pour cela vous calculerez la longueur du vecteur \vec{a}_2 à l'échelle notée $L\vec{a}_2$:

$$L_{\vec{\mathbf{a}_2}} =$$

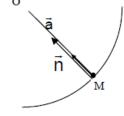
e- Dans quelle direction particulière est orienté le vecteur \vec{a}_2 ?

f- Comparer a_2 et $\frac{v_2^2}{P}$. Conclusion ?

$$\frac{v_2^2}{R}$$
 = et a_2 = On en conclut que

Dans le cas d'un mouvement circulaire uniforme, l'accélération \vec{a} s'écrit

$$\vec{a} = \frac{v^2}{R} \vec{n}$$
 avec \vec{n} vecteur unitaire normal (voir schéma).



4- Seconde loi de Newton : La plus utilisée en terminale des 3 lois

La seconde loi de la dynamique ou principe fondamental de la dynamique, nous dit que, dans un référentiel galiléen, que la somme vectorielle des forces extérieures $\sum \vec{F}_{\text{ext}}$ qui s'exercent sur un objet est égale la masse du système étudiée fois le vecteur accélération :

$$\sum \vec{F}_{\text{ext}} = \mathbf{m} \times \vec{\mathbf{a}}$$

 $\sum \vec{F}_{\text{ext}}$ est souvent appelée résultantes des forces

a- Définir le système étudié et le référentiel d'étude. Faire le bilan des forces appliquées au système et les représenter sur la figure ci-contre.

Système étudié : {autoporteur}

Référentiel d'étude : référentiel lié à la salle Bilan des forces appliquées au système :

Son poids $ec{P}$	La réaction du sol : \vec{R}	La tension du fil : \vec{T}
Direction:	Direction:	Direction:
Sens:	Sens:	Sens:
Point d'application :	Point d'application :	Point d'application :

Représentez ces 3 forces sur le schéma ci-dessus

b- Dans l'hypothèse du modèle sans frottement, que devient la relation vectorielle $\Sigma \vec{F}_{\rm ext}$ = m imes \vec{a}

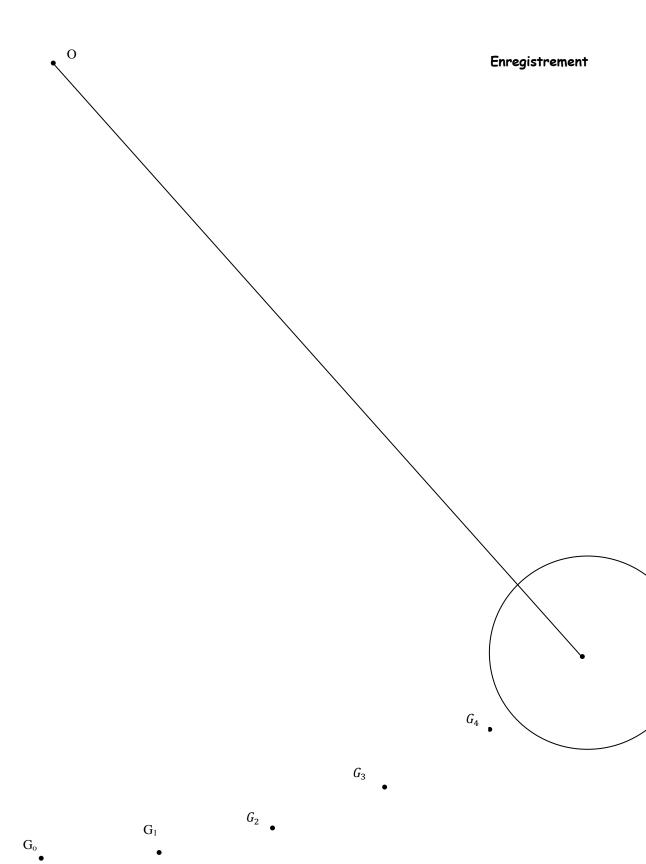
Sans frottements, le poids et la réaction du sol se compensent...

Dessinez les vecteurs \vec{T} et \vec{a} sur l'axe (Ox)

Projetons cette égalité sur l'axe (Ox)

En déduire la valeur de la tension T :

Vous pouvez visualiser la vidéo n°4 du chapitre 5 sur la projection d'un vecteur sur un axe



Activité Documentaire cours n°4 :